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CC IN CLASSICAL THEORY

Classical theory of matter fields in flat spacetime is invariant wrt.

LM(η, φ, ∂φ)→ LM(η, φ, ∂φ) + C, for arbitrary C.

Upon coupling to gravity, the equivalence principle transforms this

ambiguity to the (classical, bare) cosmological constant,

S[g, φ] = − 1

16πl2p

∫
d4x
√
−gR +

∫
d4x
√
−gLM(g, φ,∇φ) +

1

8πl2p

∫
d4x
√
−gΛb

(C ≡ Λb/8πl2p), which enters the Einstein field equations:

Rµν −
1

2
gµνR + gµνΛb = 8πl2p Tµν(φ).

The value of Λb is completely arbitrary, due to the above ambiguity

of the equivalence principle.



CC IN CLASSICAL THEORY

In the Standard Model coupled to gravity there are three dimensionful

parameters:

• the Planck length lp, fixing the gravitational scale,

• the cosmological constant Λeff , determining the cosmological scale, and

• the Higgs mass mH , determining the electroweak scale.

Taking the ratios wrt. Planck length, we obtain:

cΛ ≡ Λeffl
2
p ≈ 10−122 ← CC problem!

cH ≡ m2
Hl

2
p ≈ 10−34 ← Hierarchy problem!

All other coupling constants in the SM are . 1, which makes cΛ and

cH unusually small. A natural question to ask is:

WHY DOES THIS HAPPEN?



CC IN QUANTUM FIELD THEORY

Quantization of matter fields (keeping gravity classical) makes things

even worse:

• calculate the expectation value of the stress-energy tensor at one-loop order,

〈T̂ µν(φ)〉 = T classical
µν (φ) + T 1-loop

µν (φ),

• evaluate stress-energy for the ground state of matter fields, φ = 0,

〈T̂ µν(φ)〉
∣∣∣
φ=0

= T classical
µν (0)︸ ︷︷ ︸

0

+T 1-loop
µν (0) =

[
textbook by Birrell&Davies

]
=

=
a1

l4p
gµν +

a2

l2p

(
Rµν −

1

2
gµνR

)
+ a3

(
. . . R2 . . .

)
+ . . . ,

where a1, a2, a3, . . . are dimensionless constants of O(1),

• substitute into Einstein equations and read off the renormalized value of the CC:

Λeff = Λb + Λm, where Λm ≡ −
8πa1

l2p
.



CC IN QUANTUM FIELD THEORY

Why is this even worse:

Λeffl
2
p = Λbl

2
p − 8πa1

↑ ↑ ↑
O(10−122) arbitrary O(1)

In order to satisfy this equation, one needs to choose Λb to arrange for

the cancellation of type:
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(1. · · ·)− (1. · · ·) = 0.0000000000000000000000000

0000000000000000000000000

0000000000000000000000000

0000000000000000000000000

0000000000000000000001 · · ·

EXTREME FINE TUNING !!!



CC IN QUANTUM GRAVITY

Fundamental assumption for quantum gravity construction:

Nature has a physical cutoff at the Planck scale!

The spincube model of quantum gravity:

(1) Rewrite GR action as a topological BFCG theory plus constraint:

S =

∫
Bab ∧Rab + ea ∧Ga︸ ︷︷ ︸

topological sector

−φab
(
Bab − εabcdea ∧ eb

)
︸ ︷︷ ︸

constraint

,

(2) Quantize the theory by

– triangulating the spacetime manifold,

– defining the path integral on the triangulation for the topological sector,

– enforcing the constraint,

– redefining the measure so that the theory is finite and has a well-defined clas-

sical limit.

(3) Introduce matter fields on the triangulation in a straightforward way.



CC IN QUANTUM GRAVITY

After the dust settles, one ends up with:

Z =

∫
Dg
∫
Dφ eiS[g,φ] def

=
∏

ε∈T (M)

∫ ∞
0

dLε µ(L)
∏

r∈T (M)

∫ ∞
−∞

dφr e
iS[L,φ].

Calculation of the semiclassical limit, lp → 0, involves the following

integrals:∫ ∞
−∞

dx e−x
2/l2p = lp

√
π and

∫ ∞
−L

dx e−x
2/l2p = lp

√
π

[
1− lp

2L
√
π
e−L

2/l2p + . . .

]
.

Having a well-defined classical limit requires the suppression of the

nonanalytic terms, which can be achieved only with an exponential

measure:

µ(L) = exp

(
− 1

8πl2p
ΛµV4[L]

)
, where 0 < Λµ �

1

l2p
.

CRUCIAL PROPERTY OF QG KINEMATICS !!!



CC IN QUANTUM GRAVITY

How to calculate CC in QG? The effective action equation in QFT:

eiΓ [φ] =

∫
Dχ exp

[
iS[φ + χ]− i

∫
d4x

δΓ [φ]

δφ
χ

]
.

This can be generalized to QG in a straightforward manner:

eiΓ [L,φ] =

∫
Dl µ(L + l)

∫
Dχ exp

[
iS[L + l, φ + χ]− i

∫
d4x

(
δΓ

δL
l +

δΓ

δφ
χ

)]
.

The classical action has the form

S[L, φ] = SR[L] + SM [L, φ] +
1

8πl2p
ΛbV4[L],

and matter fields are in the ground state,

φ = 0,
δΓ

δφ
= 0.

Effective action equation reduces to:

eiΓ [L,0] =

∫
Dl e

iSR[L+l]+ i
8πl2p

(Λb+iΛµ)V4[L+l]−i
∫ δΓ
δL l
∫
Dχ eiS[L+l,χ].



CC IN QUANTUM GRAVITY

The matter path integral can be evaluated perturbatively,∫
Dχ eiS[L+l,χ] = exp

[
−ia1

l4p
V4[L + l]− ia2SR[L + l]− ia3l

2
pS(...R2...) + . . .

]
,

so we obtain the effective action equation:

eiΓ [L,0] =

∫
Dl exp

[
i

8πl2p

(
Λb + iΛµ −

8πa1

l2p

)
V4[L + l] + i(1− a2)SR[L + l]

−ia3l
2
pS(...R2...)− i

∫
d4x

δΓ

δL
l

]
.

Performing the semiclassical limit and Wick rotation, we obtain

Γ [L, 0] =
1

8πl2p
ΛeffV4[L + l] + (1− a2)SR[L + l] +O(l2p),

where the effective CC is given as:

Λeff ≡ Λb −
8πa1

l2p
+ Λµ.



CC IN QUANTUM GRAVITY

Fit to experimental data:

Λeffl
2
p = Λbl

2
p − 8πa1 + Λµl

2
p.

↑ ↑ ↑ ↑
O(10−122) arbitrary O(1) 0 < . . .� 1

We are free to choose exact cancellation of classical and matter con-

tributions (NO FINE TUNING !!!),

Λb
def

=
8πa1

l2p
, ⇒ Λeff = Λµ,

so that

0 < 10−122 � 1.

NONZERO VALUE OF THE CC IS A

PURE QUANTUM GRAVITY EFFECT !!!



CONCLUSIONS

Our assumptions:

• nature has a physical cutoff at the Planck scale

⇒ physical triangulation of spacetime,

• spincube quantization procedure for gravity

⇒ edge-lengths are fundamental degrees of freedom,

• quantum fluctuations of matter fields do not gravitate

⇒ classical CC exactly cancels vacuum fluctuations.

Consequence:

• cosmological constant is a quantum gravity effect

⇒ good agreement with experiment: 0 < 10−122 � 1.
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