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Killing forms (1)

A conformal Killing-Yano tensor ( also called conformal
Yano tensor or conformal Killing form or twistor form ) of
rank p on a (pseudo-) Riemannian manifold (M,g) is a p -form
ω which satisfies [Yano, 1952]

∇Xω =
1

p + 1
X−| dω −

1
n − p + 1

X ∗ ∧ d∗ω,

for any vector field X on M, where n is the dimension of M , X ∗

is the 1-form dual to the vector field X with respect to the metric
g , −| is the operator dual to the wedge product and d∗ is the
adjoint of the exterior derivative d .



Killing forms (2)

If ω is co-closed then we obtain the definition of a Killing-Yano
tensor, also called Yano tensor or Killing form :

ωi1...ik−1(ik ;j) = 0 .

Here a semicolon precedes an index of covariant differentiation
associated with the Levi-Civita connection and a round bracket
denotes a symmetrization over the indices within.
Moreover, a Killing form ω is said to be a special Killing form if
it satisfies for some constant c the additional equation

∇X (dω) = cX ∗ ∧ ω ,

for any vector field X on M .



Killing forms (3)

There is also a symmetric generalization of the Killing vectors:

A symmetric tensor Ki1···ir of rank r > 1 satisfying the
generalized Killing equation

K(i1···ir ;j) = 0,

is called a Stäckel-Killing tensor .



Killing forms (4)
The conserved quantities associated with Killing tensors are
given by the following proposition:

For any geodesic γ with tangent vector γ̇ i

QK = Ki1···ir γ̇
i1 · · · γ̇ ir ,

is constant along γ .

Let us note that there is an important connection between
these two generalizations of the Killing vectors. To wit, given
two Killing-Yano tensors ψi1,...,ik and σi1,...,ik there is a
Stäckel-Killing tensor of rank 2 :

K (ψ,σ)
ij = ψii2...ikσ

i2...ik
j + σii2...ikψ

i2...ik
j .

This fact offers a method to generate higher order integrals of
motion by identifying the complete set of Killing-Yano tensors.



Sasakian geometry (1)
Contact structures(1)

A (2n + 1)-dimensional manifold M is a contact manifold if
there exists a 1-form η, called a contact 1-form, on M such
that

η ∧ (dη)n 6= 0 .

For every choice of contact 1-form η there exists a unique
vector field Kη, called the Reeb vector field, that satisfies

η(Kη) = 1 and Kη−| dη = 0 .



Sasakian geometry (2)
Contact structures(2)

Example:
Consider R2n+1 with Cartesian coordinates

(x1, . . . , xn; y1, . . . , yn; z).

Contact 1-form, Reeb vector field and Riemannian metric:

η = dz −
n∑
i

y idx i ,

Kη =
∂

∂z
,

g = η2 +
n∑
i

(
(dx i)2 + (dy i)2

)
.



Sasakian geometry (3)

A simple and direct definition of the Sasakian structures is the
following:

A compact Riemannian manifold (Y ,g) is Sasakian if and only
if its metric cone (X = C(Y ) ∼= R+ × Y , ḡ = dr2 + r2 g) is
Kähler.

Here r ∈ (0,∞) may be considered as a coordinate on the
positive real line R+. The Sasakian manifold (Y ,g) is naturally
isometrically embedded into the metric cone via the inclusion
Y = {r = 1} = {1} × Y ⊂ C(Y ).



Sasakian geometry (4)

Let us denote by

K̃ ≡ J
(

r
∂

∂r

)
,

where J is the complex structure on the cone manifold.
K̃ − iJ K̃ is a holomorphic vector field on C(Y ) and the
restriction K of K̃ to Y ⊂ C(Y ) is the Reeb vector field on Y .
The Reeb vector field K is a Killing vector on (Y ,g) , has unit
length and, in particular, is nowhere zero.

Let Y be a Sasaki-Einstein manifold of dimension
dimR Y = 2n − 1 and its Kähler cone X = C(Y ) is of dimension
dimR X = 2n , (dimC X = n).



Sasakian geometry (5)

Sasaki-Einstein geometry is naturally “sandwiched” between
two Kähler-Einstein geometries as shown in the following
proposition:

Let (Y ,g) be a Sasaki manifold of dimension 2n − 1. Then the
following are equivalent
(1) (Y ,g) is Sasaki-Einstein with Ricg = 2(n − 1)g;
(2) The Kähler cone (C(Y ), ḡ) is Ricci-flat, Ricḡ = 0;
(3) The transverse Kähler structure to the Reeb foliation FK is

Kähler-Einstein with RicT = 2ngT .



Sasakian geometry (6)

The Kähler form ω is an exact 2-form and homogeneous
degree 2 under the Euler vector r ∂

∂r

ω = −1
2

d(r2η) = −rdr ∧ η − 1
2

r2dη ,

Lr ∂
∂r
ω = 2ω,

where η is the Sasakian 1-form of Y . It lifts to C(Y ) as

η = J
(dr

r

)
= i(∂ − ∂̄) log r = −2i∂∂̄ log r .



Sasakian geometry (7)

Note that the Reeb vector K̃ is dual to the 1-form r2η.
The Kähler form ω can be written as

ω =
1
2

i∂∂̄r2,

which means that

F =
r2

4
,

is the Kähler potential.



Symplectic approach (1)
Let (y , φ) be the symplectic coordinates on X .
If (X , ω) is toric, the standard n-torus Tn = Rn/2πZn acts
effectively on X

τ : Tn → Diff (X , ω),

preserving the Kähler form. ∂/∂φi generate the Tn action, φi
being the angular coordinates along the orbit of the torus action
φi ∼ φi + 2π. Tn-invariant Kähler metric on X is

ds2 = Gijdyidyj + Gijdφidφj ,

where Gij is the Hessian of the symplectic potential G(y) in the
y coordinates

Gij =
∂2G
∂yi∂yj

, 1 ≤ i , j ≤ n,

and Gij = (Gij)
−1.



Symplectic approach (2)

The almost complex structure is

J =

(
0 −Gij

Gij 0

)
,

and the symplectic (Kähler) form is ω = dyi ∧ dφi .
Associated to (X , ω, τ) there is a moment map µ : X → Rn

µ(y , φ) = y ,

i.e. the projection on the action coordinates:

yi = −1
2

〈
r2η,

∂

∂φi

〉
.



Symplectic approach (3)

Let us write the Reeb vector in the form:

K̃ = bi
∂

∂φi
.

In the symplectic coordinates (y , φ) we have

r
∂

∂r
= 2yi

∂

∂yi
,

and the components of the Reeb vector are bi = 2Gijyj .



Symplectic approach (4)

The moment map exhibits the Kähler cone as a Lagrangian
fibration over a strictly convex rational polyhedral cone C ⊂ Rn

by forgetting the angular coordinates φi

C
{

y ∈ Rn|la(y) > 0 , a = 1, . . . ,d
}
,

with the linear function la(y) = (y , va), where va are the inward
pointing normal vectors to the d facets of the polyhedral cone.
The set of vectors {va}

va = v i
a
∂

∂φi
, v i

a ∈ Z,

is called a toric data.



Delzant construction (1)

The image of X under the moment map µ is a certain kind of
convex rational polytope in Rn called Delzant polytope.

A convex polytope P in Rn is Delzant [Delzant, 1988] if
(a) there are n edges meeting at each vertex p;
(b) the edges meeting at the vertex p are rational, i.e. each

edge is of the form 1 + tui ,0 ≤ t ≤ ∞ where ui ∈ Zn;
(c) the ui , . . . ,un in (b) can be chosen to be a basis of Zn.

Delzant construction associates to every Delzant polytope
P ⊂ Rn a closed connected symplectic manifold (M, ω) together
with the Hamiltonian Tn action and the moment map µ.



Delzant construction (2)

Using the Delzant construction the general symplectic potential
has the following form in terms of the toric data:

G = Gcan + Gb + h,

where
Gcan =

1
2

∑
a

la(y) log la(y),

Gb =
1
2

∑
a

lb(y) log lb(y)− 1
2

l∞(y) log l∞(y),

with lb(y) = (b, y) , l∞(y) =
∑

a(va, y) and h is a homogeneous
degree one function of variables yi

h = λiyi + t ,

λi , t being some constants.



Complex approach (1)

The standard complex coordinates are wi on C\{0}. Log
complex coordinates are zi = log wi = xi + iφi and in these
complex coordinates the metric is

ds2 = Fijdxidxj + Fijdφidφj ,

where Fij is the Hessian of the Kähler potential. Note also that
in the complex coordinates zi the complex structures and the
Kähler form are:

J =

(
0 −I
I 0

)
, ω =

(
0 Fij
−Fij 0

)
.



Complex approach (2)

The symplectic potential G and Kähler potential F are related
by the Legendre transform

F (x) =

(
yi
∂G
∂yi
−G

)
(y = ∂F/∂x).

Therefore F and G are Legendre dual to each other

F (x) + G(y) =
∑

j

∂F
∂xj

∂G
∂yj

at xi =
∂G
∂yi

or yi =
∂F
∂xi

.

It follows from that Fij = Gij (y = ∂F/∂x).



Complex approach (3)

The (n,0) holomorphic form of the Ricci-flat metric on the
Calabi-Yau cone is

dV = eiα(det Fij)
1/2dz1 ∧ · · · ∧ dzn,

with α a phase space which is fixed by requiring that dV is a
closed form. The complex coordinates can be chosen such that

dV = ex1+iφ1dz1 ∧ · · · ∧ dzn = dw1 ∧ · · · ∧ dwn/(w2 . . .wn).

The Kähler potential F is obtain by the Legendre transform

F (x) =
r2

4
=

1
2

∑
i

biyi − t ,

Detailed analysis shows that the constant t must be set to zero..



Hidden symmetries on Sasaki-Einstein spaces (1)

The Killing forms of the toric Sasaki-Einstein manifold Y are
described by the special Killing forms

Θk = η ∧ (dη)k , k = 0,1, · · · ,n − 1.

Besides these Killing forms, there are n − 1 closed conformal
Killing forms (also called ∗-Killing forms)

Φk = (dη)k , k = 1, · · · ,n − 1.



Hidden symmetries on Sasaki-Einstein spaces (2)

Moreover in the case of the Calabi-Yau cone, the holonomy is
SU(n) and there are two additional Killing forms of degree n. In
order to write explicitly these additional Killing forms we shall
express the volume form of the metric cone in terms of the
Kähler form

dV =
1
n!
ωn.

Here ωn is the wedge product of ω with itself n times. The
volume of a Kähler manifold can be also written as

dV =
in

2n (−1)n(n−1)/2dV ∧ dV ,

where dV is the complex volume holomorphic (n,0) form of
C(Y ). The additional (real) Killing forms are given by the real
respectively the imaginary part of the complex volume form.
[Semmelmann, 2003]



Hidden symmetries on Sasaki-Einstein spaces (3)

In order to extract the corresponding additional Killing forms of
the Einstein-Sasaki spaces we make use of the fact that for any
p-form ψ on the space Y we can define an associated
p + 1-form ψC on the cone C(Y ):

ψC := rpdr ∧ ψ +
rp+1

p + 1
dψ.

ψC is parallel if and only if ψ is a special Killing form with
constant c = −(p + 1).



Y(p,q) spaces (1)

Infinite family Y (p,q) of Einstein-Sasaki metrics on S2 × S3

provides supersymmetric backgrounds relevant to the AdS/CFT
correspondence. The total space Y (p,q) of an S1-fibration over
S2 × S2 with relative prime winding numbers p and q is
topologically S2 × S3.
Explicit local metric of the 5-dimensional Y (p,q) manifold given
by the line element [Gauntlett, Martelli, Sparks, Waldram, 2004]

ds2
ES =

1− c y
6

(dθ2 + sin2 θ dφ2) +
1

w(y)q(y)
dy2

+
q(y)

9
(dψ − cos θ dφ)2

+ w(y)

[
dα +

ac − 2y + c y2

6(a− y2)
[dψ − cos θ dφ]

]2

,

where



Y(p,q) spaces (2)

w(y) =
2(a− y2)

1− cy
, q(y) =

a− 3y2 + 2cy3

a− y2

and a, c are constants. The constant c can be rescaled by a
diffeomorphism and in what follows we assume c = 1.
The coordinate change α = −1

6β −
1
6c ψ′ , ψ = ψ′ takes the line

element to the following form ( with p(y) = w(y) q(y) )

ds2
ES =

1− y
6

(dθ2 + sin2 θ dφ2) +
1

p(y)
dy2

+
p(y)

36
(dβ + cos θ dφ)2

+
1
9

[dψ′ − cos θ dφ+ y(dβ + cos θ dφ)]2 ,



Y(p,q) spaces (3)

For
0 < α < 1 ,

we can take the range of the angular coordinates (θ,Φ,Ψ) to be
0 ≤ θ ≤ 2π ,0 ≤ Φ ≤ 2π ,0 ≤ Ψ ≤ 2π. Choosing 0 < a < 1 the
roots yi of the cubic equation

a− 3y2 + 2y3 = 0 ,

are real, one negative (y1) and two positive (y2, y3). If the
smallest of the positive roots is y2, one can take the range of
the coordinate y to be

y1 ≤ y ≤ y2 .



Y(p,q) spaces (4)

For this particular space we take the complex coordinates

z1 =3 ln r + ln sin θ +
1
2

ln
p(y)(1− y)

2
+ iψ′

z2 =
1

3
√

3

(
ln tan

θ

2
+ iφ

)

z3 =
1
6

ln
(

1
sin θ

√
(y − y1)

− 1
y1 (y2 − y)

− 1
y2 (y3 − y)

− 1
y3

)
− iα− 1

6
iψ′



Y(p,q) spaces (5)

One can write

ds2
ES = ds2

EK + (
1
3

dψ′ + σ)2

The Sasakian 1-form of the Y (p,q) space is

η =
1
3

dψ′ + σ ,

with
σ =

1
3

[− cos θ dφ+ y(dβ + cos θ dφ)] .

connected with local Kähler form ΩEK .
This form of the metric with the 1-form η is the standard one for
a locally Einstein-Sasaki metric with ∂

∂ψ′ the Reeb vector field.



Y(p,q) spaces (6)

The local Kähler and holomorphic (2,0) form for ds2
EK are

ΩEK =
1− y

6
sin θdθ ∧ dφ+

1
6

dy ∧ (dβ + cos θdφ)

dVEK =

√
1− y
6p(y)

(dθ + i sin θdφ) ∧
[
dy + i

p(y)

6
(dβ + cos θdφ)

]



Y(p,q) spaces (7)

From the isometries SU(2)× U(1)× U(1) the momenta
Pφ,Pψ,Pα and the Hamiltonian describing the geodesic
motions are conserved. Pφ is the third component of the SU(2)
angular momentum, while Pψ and Pα are associated with the
U(1) factors. Additionally, the total SU(2) angular momentum
given by

J2 = P2
θ +

1
sin2 θ

(Pφ + cos θPψ)2 + P2
Ψ ,

is also conserved.



Y(p,q) spaces (8)
Specific conserved quantities for Einstein-Sasaki spaces (1)

First of all from the 1-form η

Ψ = η ∧ dη

=
1
9

[(1− y) sin θ dθ ∧ dφ ∧ dψ′ + dy ∧ dβ ∧ dψ′

+ cos θ dy ∧ dφ ∧ dψ′ − cos θ dy ∧ dβ ∧ dφ
+ (1− y)y sin θ dβ ∧ dθ ∧ dφ] .

is a special Killing form. Let us note also that

Ψk = (dη)k , k = 1,2 ,

are closed conformal Killing forms (?-Killing forms).



Y(p,q) spaces (9)
Specific conserved quantities for Einstein-Sasaki spaces (2)

On the Calabi-Yau manifold the Kähler form is

Ωcone = rdr ∧ η + r2ΩEK .

and the holomorphic (3,0) form is

dVcone = eψ
′
r2dVEK ∧ [dr + ir ∧ η]

= eψ
′
r2

√
1− y
6p(y)

(
dθ + i sin θdφ

)
∧
[
dy + i

p(y)

6
(dβ + cos θdφ)

]
∧
[
dr + i

r
3

[ydβ + dψ′ − (1− y) cos θdφ
]



Y(p,q) spaces (10)
Specific conserved quantities for Einstein-Sasaki spaces (3)

The additional Killing 3-forms of the Y (p,q) spaces are
extracted from the volume form dVcone.

Using the the 1-1 correspondence between special Killing
p-forms on M2n+1 and parallel (p + 1)-forms on the metric cone
C(M2n+1) for p = 2 we get the following additional Killing
2-forms of the Y (p,q) spaces written as real forms:

Ξ = ReωM =

√
1− y
6 p(y)

×
(

cosψ′
[
−dy ∧ dθ +

p(y)

6
sin θ dβ ∧ dφ

]
− sinψ′

[
− sin θ dy ∧ dφ− p(y)

6
dβ ∧ dθ

+
p(y)

6
cos θ dθ ∧ dφ

])



Y(p,q) spaces (11)
Specific conserved quantities for Einstein-Sasaki spaces (4)

Υ = ImωM =

√
1− y
6 p(y)

×
(

sinψ′
[
−dy ∧ dθ +

p(y)

6
sin θ dβ ∧ dφ

]
+ cosψ′

[
− sin θ dy ∧ dφ− p(y)

6
dβ ∧ dθ

+
p(y)

6
cos θ dθ ∧ dφ

])



Y(p,q) spaces (12)
Specific conserved quantities for Einstein-Sasaki spaces (5)

The Stäckel-Killing tensors associated with the Killing forms
Ψ ,Ξ ,Υ are constructed as usual. Together with the Killing
vectors Pφ,Pψ,Pα and the total angular momentum J2 these
Stäckel-Killing tensors provide the superintegrability of the
Y (p,q) geometries.



Outlook

I Complete integrability of geodesic equations
I Separability of Hamilton-Jacobi, Klein-Gordon, Dirac

equations
I Hidden symmetries of other spacetime structures


