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Models with scalar fields are very useful to describe the observable
evolution of the Universe as the dynamics of the spatially flat
Friedmann–Lemâıtre–Robertson–Walker (FLRW) background with

ds2 = − dt2 + a2(t)
(

dx21 + dx22 + dx23
)

and cosmological perturbations.
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about models with minimally coupled scalar field working in the
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MODEL WITH NON-MINIMAL COUPLING

Models with non-minimally coupled scalar fields are described by the
following action:

S =

∫

d4x
√−g

[

U(φ)R − 1

2
gµνφ,µφ,ν − V (φ)

]

, (1)

where U(φ) and V (φ) are differentiable functions of the scalar field φ.
We assume that U(φ) > 0.

In the spatially flat Friedmann–Lemâıtre–Robertson–Walker (FLRW)
metric with the interval:

ds2 = − dt2 + a2(t)
(

dx21 + dx22 + dx23
)

,
we get the following system of equations:
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6UH2 + 6U̇H =
1

2
φ̇2 + V , (2)

2U
(

2Ḣ + 3H2
)

= − φ̇2

2
− 2Ü − 4HU̇ + V , (3)

φ̈+ 3Hφ̇− 6U ′
(

Ḣ + 2H2
)

+ V ′ = 0 . (4)
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φ̇2 + V , (2)

2U
(

2Ḣ + 3H2
)

= − φ̇2

2
− 2Ü − 4HU̇ + V , (3)

φ̈+ 3Hφ̇− 6U ′
(

Ḣ + 2H2
)

+ V ′ = 0 . (4)

From Eqs. (2)–(4) we get the following system:

φ̇ = ψ,

ψ̇ = − 3Hψ − (6U ′′ + 1)U ′

2 (3U ′2 + U)
ψ2 +

UV ′ − 2VU ′

3U ′2 + U
,

Ḣ = − 2U ′′ + 1

4(3U ′2 + U)
ψ2 +

2U ′Hψ

3U ′2 + U
− 6U ′2H2

3U ′2 + U
+

U ′V ′

2(3U ′2 + U)
.

(5)

4 / 33



6UH2 + 6U̇H =
1

2
φ̇2 + V , (2)

2U
(
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Note that equation (2) is not a consequence of system (5).
The system (5) is equivalent to the initial system of equations (2)–(4) if
and only if we choose such initial data that equation (2) is satisfied.
In other words, if equation (2) is satisfied in the initial moment of time,
then from system (5) it follows that equation (2) is satisfied at any
moment of time.
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I. Stability analysis of de Sitter solutions

Subtracting (2) from Eq. (3), we obtain:

4UḢ = − φ̇2 − 2Ü + 2HU̇. (6)

We introduce a new variable

P ≡ H√
U

+
U ′φ̇

2U
√
U
.

In terms of P Eqs. (2) and (6) have the following form

3P2 =
U + 3U ′2

4U3
φ̇2 +

V

2U2
=

A

2
φ̇2 + Veff , (7)

Ṗ = − A
√
U

2
φ̇2, (8)

where A ≡ (U + 3U ′2)/(2U3), Veff ≡ V /(2U2).
We consider U(φ) > 0 only, so A(φ) > 0 at any φ.
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De Sitter solutions

Now we differentiate (7) over time, substitute (8) and get

φ̇ = ψ ,

ψ̇ = − 3P
√
Uψ − A′

2A
ψ2 − V ′

eff

A
.

(9)

De Sitter solutions corresponds to ψ = 0, hence, V ′
eff (φdS ) = 0, in other

words
V ′(φdS )U(φdS ) = 2V (φdS )U

′(φdS ).

The corresponding Hubble parameter is

HdS = PdS

√

U(φdS ) = ±
√

V (φdS )

6U(φdS )
= ±

√

V ′(φdS )

12U ′(φdS )
. (10)
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Lyapunov’s stability

Let us consider Lyapunov’s stability of a de Sitter solution. Substituting

φ(t) = φdS + φ1(t), ψ(t) = ψ1(t), (11)

into (9), we get the following linear system on φ1(t) and ψ1(t):

φ̇1 = ψ1,

ψ̇1 = − 3HdSψ1 −
V ′′
eff (φdS )

A(φdS )
φ1.

(12)

So, the considering de Sitter solution is stable under conditions HdS > 0
and V ′′

eff (φdS ) > 0. In other words, the model has a stable de Sitter
solution only if the potential Veff have a minimum. Note that this
conclusion are valid for an arbitrary differentiable functions U and V ,
under condition U(φdS ) > 0.
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II. MODELS WITH V (φ) < 0.

The simplest way to get a non-positive definite potential from the known
positive definite one is to subtract a positive constant.
Let us consider such a potential that ∃φ: V (φ) < 0.
Equation (2) has the following solutions:

H± = − U̇

2U
±

√

√

√

√

1

6U

[

φ̇2

2
+

3U ′2φ̇2

2U
+ V

]

.

The function H is a continuous function, so, if ∀φ: V (φ) > 0, then
evolution of the Universe in such a model is described either only H− or
only H+.
It depends on initial conditions.
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On the (φ, φ̇) plane there is the boundary, at any point of which

φ̇2

2
+

3(U ′ φ̇)2

2U
+ V = 0 . (13)

This boundary divides the phase plane into two domains: one
corresponds to real values of the Hubble parameter H±, the other one
corresponds to non-real values of this function. We call the domain on
the (φ, φ̇) plane, which corresponds to non-real values of the Hubble
parameter as ”unreachable domain”.
The boundary of this domain is defined by (13).
If V (φ) is not a positive definite function, then it is possible that a part
of evolution is described by H+, whereas the other part — by H−.
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A new variable Q

Let us introduce

Q ≡ H +
U̇

2U
= H +

U ′φ̇

2U
. (14)

The boundary is the line Q = 0.
If a trajectory starts from a real value of H , then it never crosses the line
Q = 0, but can touch this line.
Q(t) is a monotonically decreasing function.
If H(t0) = H−, then Q < 0 always.
If H(t0) = H+, so, Q(t0) > 0, then ∃t1 such that Q(t1) = 0.
The evolution of the Universe in such a model is described by H+ at
t < t1 and H− at t > t1.
We consider

V (φ) =
ε

4

(

φ2 − b2
)2 − Λ,

where ε > 0, b and Λ > 0 are constants.
We choose such values of these constant that V (0) > 0.

I.Ya. Aref’eva, N.V. Bulatov, R.V. Gorbachev, S.Yu. V.,
Class. Quant. Grav. 31 (2014) 065007, arXiv:1206.2801
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In terms of the variable Q, equations (2) and (6) take the following form

3Q2 =
φ̇2

4U
+

3U̇2

4U2
+

V

2U
. (15)

Q̇ − U̇

2U
Q = − U + 3U ′2

4U2
φ̇2. (16)

Therefore,
d

dt

[

Q√
U

]

= − U + 3U ′2

4U2
√
U

φ̇2 6 0. (17)

For any U(φ) > 0 the function Q/
√
U decrease monotonically.

If for some moments of time t1 and t2 > t1 we have φ(t2) = φ(t1) and
φ(t) is not a constant at t1 6 t 6 t2, then Q(t2) < Q(t1).
The physical reasons of inequality (17) will be clear when we consider
this model in the Einstein frame.
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INDUCED GRAVITY MODEL

Let

U(φ) =
1

2
ξφ2 , ξ > 0.

Equation (2) can be rewritten as follows:

H2 + 2H
ψ

φ
− V

3ξφ2
− 1

6ξ

(

ψ

φ

)2

= 0 (18)

and has the solutions

H± = − ψ

φ
±
√

(

1 +
1

6ξ

)(

ψ

φ

)2

+
V

3ξφ2
. (19)

The function H is a continuous function, so, if V (φ) > 0 for all φ, then
evolution of the Universe in such a model is described either only H− or
only H+. It depends on initial conditions.
If V (φ) is not a positive definite function, then it is possible that a part
of evolution is described by H+, whereas the other part — by H−.
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HIGGS-LIKE POTENTIAL

We have the system of three first order differential equations

φ̇ = ψ , (20)

ψ̇ = − 3Hψ − ψ2

φ
+

1

(1 + 6ξ)φ
[4V (φ) − φV ′(φ)], (21)

Ḣ =
4Hψ

(1 + 6ξ)φ
+

V ′(φ)

(1 + 6ξ)φ
− 12ξ

1 + 6ξ
H2 − 1 + 2ξ

2ξ(1 + 6ξ)

(

ψ

φ

)2

. (22)

Equation (18) is a condition of the initial data of system (20)–(22).
Let us subtract the cosmological constant from the Higgs-like potentials:

V (φ) =
ε

4

(

φ2 − b2
)2 − Λ, (23)

where ε > 0, b and Λ > 0 are constants.
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NUMERIC SOLUTIONS AT Λ = 0

At Λ = 0 the behaviour of solutions is well-known:

ψ

φ

H

t

Figure: The solution of system (20)–(22) at Λ = 0. We choose b = 1, ε = 10,
ξ = 10. The initial conditions are φ0 = 2, ψ0 = 0, H0 is calculated by (19) with
sing ”+” (H0 =

√

3/4). The Hubble parameter is always H+.

In I.Ya. Aref’eva, N.V. Bulatov, R.V. Gorbachev, S.Yu. V., Class. Quant.
Grav. 31 (2014) 065007, we get numeric solutions at Λ > 0.
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NUMERIC SOLUTIONS AT Λ > 0

Numeric calculations give the following solution for system (20)–(22):

ψ

φ

H

t

Figure: We choose Λ = 0.05, b = 1, ε = 10, ξ = 10.
The initial conditions are φ0 = 2, ψ0 = 0, H0 = H0+.
On the left picture, brown dashed line corresponds to H+ = 0, brown dashed
line with long dashes corresponds to H

−
= 0, black line is the boundary of the

unreachable domain. On the right picture, brown color means that H = H+,
whereas H = H

−
is drown in dark green color.
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For the induced gravity Q ≡ H +
ψ

φ
.

We consider φ > 0.

d

dt

[

Q

φ

]

= −6ξ + 1

2ξφ

(

ψ

φ

)2

6 0. (24)

Let at t1 and t2 > t1 we have φ(t2) = φ(t1), from (24) we get:

Q(t2)

φ(t2)
− Q(t1)

φ(t1)
=

1

φ(t1)
(Q(t2)− Q(t1)) = − 6ξ + 1

2ξ

t2
∫

t1

ψ2

φ3
dt 6 C0 < 0.

So, for any circle value of Q decreases on some positive value, which
doesn’t tend to zero, when number of circles tends to infinity, hence, only
a finite number of circles is necessary to get the value Q = 0.
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THE BOUNDARY OF THE UNREACHABLE DOMAIN

For potential (23) equation Q = 0 is equivalent to

(1 + 6ξ)φ̇2 = 2Λ− ε

2

(

φ2 − b2
)2
.

At Λ < εb4/4 the unreachable domain consists of two separated parts.
This curve is not a solution.
To prove it we consider the equation without potential

Ḣ = − ψ̇

φ
+ H

ψ

φ
− 2ξ + 1

2ξ

(

ψ

φ

)2

.

Substituting H = −ψ
φ
, we get

6ξ + 1

ξ

(

ψ

φ

)2

= 0.

So, only a constant solution with ψ = 0 and H = 0 can belong to the
boundary.
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We proved the following statements:
If a solution tends to the boundary, then it reaches the
boundary in a finite time.
The boundary is not a solution.
On the boundary Q̇ < 0, H(t) evolves from H+ to H−.
The phase trajectories are being attracted to the boundary of
the unreachable domain, touch it and go to infinity:

Solutions with H(t) = H+ and H(t) = H−.

ψ

φ

ψ

φ

Figure: Phase portraits of system (20)–(21) at Λ = 0.05, b = 1, ε = 10, ξ = 1.
The function H(t) is given by (18) as H+ (left) and H

−
(right).

18 / 33



MODEL WITH THE HILBERT–EINSTEIN TERM

Let us consider the model with

U(φ) =
ξ

2
φ2 +

M2
Pl

16π
.

ψ

φ

H

t

If a trajectory rotates around one of the unreachable domains starting
from H+ then it will surely reach the boundary of the unreachable
domain for a finite period of time and the evolution corresponding to H+

changes to the evolution with H−.
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EXACT SOLUTIONS

In R + R2 gravity there exits the well-known Ruzmaikin solution with
H = C (t − t0). T.V. Ruzmaikina, A.A. Ruzmaikin, JETP 30 (1970) 372
At C < 0 this solution is used for the Starobinsky inflationary model:
A.A. Starobinsky, JETP Lett. 30 (1979) 682 [Pisma Zh. Eksp. Teor. Fiz.

30 (1979) 719].
There is the connection due to the conformal transformation:

f (R) ↔ GR + a scalar field ↔ a nonminimal coupled scalar field.

It is easy to see that for U(φ) = 1/6− ξφ2 Eq. (6) has the solution

H = H0t + C0, φ =
H0t + C0

√

3H0(2ξ − 1)
. (25)

The corresponding potential is

V (φ) = H0

(

9(1− 2ξ)ξφ4 − 3(1 + 2ξ)

2
φ2 − 1

6(2ξ − 1)

)

. (26)

To get real φ(t) at ξ < 0 we should put H0 < 0. If C0 > 0, then the
inflationary scenario can be realize. At the first moment, t = 0, H = C0

and then tends to zero. Note that V (0) < 0.
M.A. Skugoreva, A.V. Toporensky, S.Yu. Vernov, arXiv:1404.6226
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THE JORDAN AND EINSTEIN FRAMES

These two frames are related by conformal transformation gµν = Ω2g
(E)
µν :

⇒ R = Ω−2
[

R (E) − 6
(

�(E) lnΩ + gµν(E)∇(E)
µ lnΩ∇(E)

ν ln Ω
)]

At Ω−2 =
κ2

2
U → Ω =

√
2

κ
√
U
,

where κ2 ≡ 8π/MPl
2. We get the model with a minimally coupled scalar

field and the corresponding FLRW metric has the interval

ds2 = − dt2E + a2E (tE )δijdx
idx j , (27)

dtE = Ω−1dt =
κ
√
U√
2

dt, aE =
κ
√
U√
2

a ,

HE ≡ d log aE
dtE

= Ω

(

H − Ω̇

Ω

)

=

√
2

κ
√
U

(

H +
U̇

2U

)

=

√
2

κ
√
U
Q.

Q = 0 is equivalent to HE = 0.
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III. INTEGRABLE COSMOLOGICAL MODELS

The use of the FLRW metric essentially simplify the Einstein equations.
But, only a few cosmological models with scalar fields are integrable.
P. Fré, A. Sagnotti, A.S. Sorin, Nucl. Phys. B 877 (2013) 1028,
arXiv:1307.1910.
The standard way to integrate a cosmological model is

to use the FLRW metric with a parametric time

ds2 = N2(τ)dτ2 − a2(τ)
(

dx21 + dx22 + dx23
)

.

to guess a suitable lapse function N(τ).

to linearize equations, introducing new depending variables.
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EQUATIONS WITH PARAMETRIC TIME

Our goal is to find integrable model with non-minimal coupling using the
knowledge of integrable models with minimal coupling.
To do this we use the FLRW metric with a parametric time and find the
correspondence between potentials and lapse functions in the Einstein
and Jordan frames.

6Uȧ2

a2
+

6U ′ȧφ̇

a
=

1

2
φ̇2 + N2V . (28)

4Uä

a
+
2Uȧ2

a2
+
4U ′ȧφ̇

a
− 4UȧṄ

aN
+2U ′′φ̇2+2U ′φ̈− 2U ′φ̇Ṅ

N
= −1

2
φ̇2+N2V .

(29)
The variation with respect to φ gives the Klein–Gordon equation:

φ̈+

(

3
ȧ

a
− Ṅ

N

)

φ̇− 6U ′
[

ä

a
+

ȧ2

a2

]

+ 6
ȧṄ

aN
U ′ + N2V ′ = 0. (30)

A suitable combination of these equations is
[

φ̈+

(

3
ȧ

a
− Ṅ

N

)

φ̇

] [

1 + 3
U ′2

U

]

+
U ′

2U
φ̇2 [1 + 6U ′′]+N2

[

V ′ − 2
U ′

U
V

]

= 0.
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CONFORMAL TRANSFORMATION

Let us make the conformal transformation of the metric

gµν =
U0

U
g̃µν ,

where U0 is a constant, and introduce a new scalar field φ such that

d ϕ̃

dφ
=

√

U0(U + 3U ′2)

U
⇒ ϕ̃ =

∫

√

U0(U + 3U ′2)

U
dφ. (31)

In this case the action (1) becomes the action for a minimally coupled
scalar field:

S =

∫

d4x
√

−g̃

[

U0R(g̃)−
1

2
g̃µνϕ̃,µφ,ν +W (ϕ̃)

]

, (32)

where

W (ϕ̃) =
U2
0V (φ(ϕ̃))

U2(φ(ϕ̃))
. (33)

The Friedmann metric becomes ds2 = Ñ2dτ2 − ã2~dl
2
, where

Ñ =

√

U

U0
N , ã =

√

U

U0
a.
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FRIEDMANN EQUATIONS

We have the following equations:

6U0h̃
2 =

1

2
˙̃ϕ2 + Ñ2W , (34)

4U0
˙̃
h + 6U0h̃

2 − 4U0h̃

˙̃
N

Ñ
= −1

2
˙̃ϕ2 + Ñ2W , (35)

¨̃ϕ+

(

3h̃−
˙̃
N

Ñ

)

φ̇+ Ñ2W,φ = 0, (36)

where h̃ ≡ ˙̃a/ã.
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THE GENERAL ALGORITHM

Let us suppose that for some potential W we know the general exact
solution of the system of equations (34)–(36): ϕ̃(τ), ã(τ), Ñ(τ).
We also suppose that the function φ(ϕ̃) is known explicitly.
In this case, we can also find the general solution of the system of
equations (28)–(30) with the potential

V (φ) =
U2(φ)W (ϕ̃(φ))

U2
0

, (37)

To do it we really need only

N(τ) =

√

U0

U(φ(ϕ̃(τ))
Ñ(τ).

It is the most important information.
After this we consider only equations in the Jordan frame and linearize
them.

26 / 33



TWO EXAMPLES OF U(φ)

Let us consider the induced gravity with

U(φ) =
1

2
ξφ2. (38)

In this model

ϕ̃ =

√

2U0(1 + 6ξ)

ξ
ln

[

φ

φ0

]

and φ = φ0e

√

ξ

2U0(1+6ξ)
ϕ̃
. (39)

We put ξ 6= −1/6, because at ξ = −1/6 we have U + 3U ′2 = 0 and
nontrivial solutions exist for the potential V = V0φ

4 only.
(I.Ya. Aref’eva, N.V. Bulatov, R.V. Gorbachev, S.Yu.V., arXiv:1206.2801)
In the case ξ = −1/6 we consider models with

U(φ) = U0 −
φ2

12
, (40)

(K. Bamba, Sh. Nojiri, S.D. Odintsov, D. Sáez-Gómez, arXiv:1401.1328)
In this case

ϕ̃ =
√

3U0 ln

[
√
12U0 + φ√
12U0 − φ

]

and φ =
√

12U0 tanh

[

ϕ̃√
12U0

]

. (41)
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EXPONENTIAL POTENTIAL

Let us consider the cosmological model with a minimally coupled scalar
field and the exponential potential:

W = W0e
2
√
3λϕ̃, (42)

where λ 6= ±1.
D.S. Salopek and J.R. Bond, Phys. Rev. D 42 (1990) 3936–3962.
We put U0 = 1/4.
In the induced gravity model the corresponding potential is

V (φ) = 4W0ξ
2φ4

(

φ

φ0

)λ
√

6(1+6ξ)
ξ

= 4W0ξ
2φ4

(

φ

φ0

)6λΓ

.

where Γ ≡
√

1+6ξ
6ξ .

In the model including the Hilbert–Einstein curvature term plus a scalar
field conformally coupled to gravity

V = W0

[

1− φ2

3

]2
(√

3 + φ√
3− φ

)3λ

= W0ΘΥ3λ, Θ ≡
[

1− φ2

3

]2

,Υ ≡
√
3 + φ√
3− φ

.
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Table: FAMILIES POTENTIALS OF INTEGRABLE MODELS

W (minimal coupling) V (induced gravity) V (conformal coupling)

c0e
2
√
3λϕ̃ c̃0φ

4+6λΓ c0ΘΥ3λ

c0 + c1e
√
3ϕ̃ + c2e

−
√
3ϕ̃ c̃0φ

4 + c̃1φ
4+3Γ + c̃2φ

4−3Γ Θ
[

c0 + c1Υ
3
2 + c2Υ

− 3
2

]

c1e
2
√
3λϕ̃ + c2e

√
3(λ+1)ϕ̃ c̃1φ

4+6λΓ + c̃2φ
4+3(λ+1)Γ Θ

[

c1Υ
3λ + c2Υ

3
2 (λ+1)

]

c1e
2
√
3ϕ̃ + c2 φ4

[

c̃1φ
6Γ + c̃2

]

Θ
[

c1Υ
3 + c2

]

c0ϕ̃e
2
√
3ϕ̃

√
3Γc̃0φ

4+6Γ ln
[

φ
φ0

] √
3
2 c0ΘΥ3 ln (Υ)

c1e
2
√
3λϕ̃ + c2e

2
√

3
λ

ϕ̃ φ4
[

c̃1φ
6λΓ + c̃2φ

6 Γ
λ

]

Θ
[

c1Υ
3λ + c2Υ

3
λ

]

In Table 1 we present the list of the potentials of integrable cosmological
models. The constants c̃i = 4ξ2ci , λ 6= ±1, λ 6= 0.
P. Fré, A. Sagnotti, A.S. Sorin, arXiv:1307.1910 (minimal coupling).
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Table: Lapse functions for integrable cases

Ñ (minimal coupling) N (induced gravity) N (conformal coupling)

1
√
6√
c0
e−

√
3λϕ̃

√
3√
ξc0
φ−3λΓ−1

√

18
c0(3−φ2)Υ

−3λ/2

2 1
√
2√
ξφ

√

3
3−φ2

3 e−
√
3λϕ̃ 1√

2ξ
φ−3Γλ−1

√

3
3−φ2 Υ

−3λ/2

4 e−
√
3ϕ̃ 1√

2ξ
φ−3Γ−1

√

3
3−φ2 Υ

−3/2

5
e−2

√
3ϕ̃

ã3
9(Γ2−1)2

a3φ4

(

φ
φ0

)−6Γ
9
a3

(
√
3−φ)

(
√
3+φ)5

6 ã3 φ2a3

3(Γ2−1)

(

1− φ2

3

)2

a3

A.Yu. Kamenshchik, E.O. Pozdeeva, A. Tronconi, G. Venturi, and
S.Yu. V., Class. Quant. Grav. 31 (2014) 105003, arXiv:1312.3540
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Induced gravity model with a power-law potential

The first Friedmann equation with U(φ) = ξ
2φ

2 is

(

d

dτ
ln(aφ)

)2

−
(

d

dτ
ln(φΓ)

)2

=
VN2

3ξφ2
, (43)

where Γ ≡
√

1+6ξ
6ξ .

Let us consider
V = 4ξ2c0φ

2n, n = 2 + 3λΓ. (44)

Suitable choice is

N =

√
3√
ξc0

φ1−n. (45)

We introduce new variables u and v :

aφ ≡ eu+v , φΓ ≡ eu−v ,

and obtain Eq. (43) as follows:

u̇v̇ =
VN2

12ξφ2
= 1 ⇒ u̇ =

1

v̇
. (46)
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Let us consider
[

φ̈+

(

3
ȧ

a
− Ṅ

N

)

φ̇+
φ̇2

φ

]

(1 + 6ξ) +

[

V ′ − 4

φ
V

]

N2 = 0. ⇔

Γ (ü − v̈) + (n − 2)(u̇ − v̇)2 + 3Γ
(

u̇2 − v̇2
)

+ 4(n − 2) = 0. (47)

x = u̇ ⇒ v̇ =
1

x
,

equation (47) is the Riccati equation

ẋ +
n − 2 + 3Γ

Γ
x2 +

n − 2− 3Γ

Γ
= 0.

The standard substitution

x =
Γẏ

(n − 2 + 3Γ)y
,

gives the following linear equation:

ÿ +

(

(n − 2)
2

Γ2
− 9

)

y = 0 .

So, we are able to get the general solution.
The induced gravity cosmological model with power-law potential
is integrable.
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CONCLUSIONS

Cosmological models with non-minimally coupling scalar fields has
been considered.
We study dynamics of non-minimally coupled scalar field
cosmological models with Higgs-like potentials and a negative
cosmological constant.
In these models the inflationary stage of the Universe evolution
changes into a quasi-cyclic stage of the Universe evolution with
oscillation behaviour of the Hubble parameter from positive to
negative values. The Hubble parameter can perform a few cycles
before to become negative forever.
The exact solution and the corresponding potential are presented.
We show how to get integrable models with non-minimal coupling
using the suitable parametric time.
We obtain the general solution for one of the integrable models,
namely, the induced gravity model with a power-law potential for the
self-interaction of the scalar field.
We show that the knowledge of the suitable lapse function maybe
enough to get the general solutions, solving equations in the Jordan
frame only.
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