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•

1. 1. General structure of the solution. Bell polynomials: a brief review

•
We are considering a cubic open superstring field theory. Ghost numbers of string

field components are not fixed and can be arbitrary, and there are no midpoint
inverse picture changing insertions. The standard b0Ψ = 0 gauge condition is
replaced with the s.c. “ghost cohomology” constraint which is more stringent,
since the original string field lives in a larger space.

•
The ansatz for the pure ghost analytic solution that we propose is

Ψ = Ψ(+) + Ψ(−)

Ψ(+) =

∞∑
N=1

N−2∑
n=0

λnNce
χ+NφB

[αn,βn,γn]
n (φ, χ, σ)

Ψ(−) =

∞∑
N=1

N−2∑
n=0

λnNce
χ−(N+2)φB

[αn,βn,γn]
n (φ, χ, σ)
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•
where φ, χ and σ are bosonized superconformal ghosts for the b− c and β − γ

systems:

•

b = e−σ, c = eσ, γ = eφ−χ, β = eχ−φ∂χ

•
B
[α,β,γ]
n (φ, χ, σ) are the Bell polynomials of degree n:

•

B
[α,β,γ]
n (φ, χ, σ) ≡ Bn(x1, ...xn)

xk = α∂kφ + β∂kχ + γ∂kσ

k = 1, ..., n

•
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where Bn(x1, ...xn) are complete Bell polynomials in x1, ...xn (definition will
be given below); αn, βn, γn are some numbers (to be determined in the process
of the solution) and the coefficients λnN are defined through triangular recursion
relations:

λnN =

N1+N2=N−2∑
N1,N2=1

N1−1∑
n1=0

N2−1∑
n2=0

ρ
n|n1;n2
N |N1;N2

λ
n1
N1
λ
n2
N2

(1)

•
Our purpose is to determine the coefficients: ρ

n|n1;n2
N |N1,N2

by directly computing

the star product, i.e. the relevant correlators

<< Ψ, QΨ >>=< Ψ(0)I ◦QΨ(0) >
and

<< Ψ,Ψ ⋆ Ψ >>=< f31 ◦ Ψ(0)f32 ◦ Ψ(0)f33 ◦ Ψ(0) >
where I(z) = −1

z and

fnk (z) = e
iπ(k−1)

n (
1− iz

1 + iz
)
2
n (2)

maps the worldsheets of n interacting strings putting them together on a single
disc.
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•

Some basic facts about Bell polynomials

•
The standard definition of the complete Bell polynomials Bn(x1, ...xn) is given
by

Bn(x1, ...xn) =

n∑
k=1

Bn|k(x1, ...xn−k+1) (3)

where Bn|k(x1, ...xn−k+1) are the incomplete Bell polynomials defined accord-
ing to

•

Bn|k(x1, ...xn−k+1) =
∑

p1,...pn−k+1

n!

p1!...pn−k+1!
x
p1
1 (
x2

2!
)p2...(

xn−k+1
(n− k + 1)!

)pn−k+1

with the sum taken over all the combinations of non-negative pj satisfying
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•

n−k+1∑
j=1

pj = k;

n−k+1∑
j=1

jpj = n

•
In number theory, Bell polynomials are known to satisfy a number of useful and

beautiful identities and properties

•
Just to mention a couple of examples,

Bn|k(1, ...1) = S(n, k)

are the second kind Stirling numbers

Bn|k(0!, 1!, ..., (n− k)!)

can be expressed in terms of combinations of Bernoulli numbers
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•
Also, for Taylor series of a function f (x) =

∑
n
anx

n

n! one has

ef (x) =
∑
n

Bn(a1, ..an)
xn

n!

so vertex operators in string theory are typically given by combinations of Bell
polynomials in the expansion modes.

•
If one identifies xn = ∂nφ(z), where φ(z) is some scalar field, one obtains Bell

polynomials in derivatives of φ (note that in the particular case φ(z) = z2 this
would reduce to Hermite polynomials in z).

•
Other useful objects to define are the Bell generators

Hn(y|x1, ..., xn) =
n∑
k=1

Bn|k(x1, ..., xn−k+1)y
n
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and more generally

Gn(y1...yn|x1, ..., xn) =
n∑
k=1

Bn|k(x1, ..., xn−k+1)y1...yk

•
In the context of two-dimensional CFT, one can think of Bell polynomials as

higher derivative generalizations of the Schwarzian derivative, appearing in the
global conformal transformation law for the stress tensor. That is, under z → f (z)
one has

T (z) → (
df

dz
)2T (f (z)) +

c

12
S(f (z))

•
where the Schwarzian derivative:

S(f (z)) = (
f ′′(z)
f ′(z)

)′ − 1

2
(
f ′′(z)
f ′(z)

)2

can be expressed in terms of the second order Bell polynomials in the log of f ′,
with xk ≡ dk−1

dzk−1log(f
′):
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•

S(f (z)) = B2|1(log(f
′),
dlog(f ′)
dz

)− 1

2
B2|2(log(f

′))

≡ −2H2(−
1

2
|log(f ′)) ≡ −2B2(−

1

2
log(f ′))

•
where

Bn(g(x)) ≡ Bn(∂g, ...∂
ng)

= Bn(x1, ...xn)|xk=∂kg;k=1,...,n
for any function g(x).

•
This is point is of importance as the higher order Bell polynomials will naturally

enter the global transformation law for the string fields of our ansatz for analytic
solution

•
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2. SFT ansatz: global conformal transformation

•
The major difficulty in calculating the star product is that generic string fields

behave in an extremely cumbersome way under global conformal transformations
fnk (z) Therefore the straightforward calculation of the star product is generally
beyond the reach.

•
On the other hand, the string field operators entering our ansatz (Bell polyno-

mials multiplied by exponents) turn out to transform in a relatively simple and
compact way, forming an invariant subspace of operators under global conformal
transformations.

•
Our strategy to find the global transformation for Ψ is the following:
(1) to find the infinitezimal transformation
(2) to deduce the global transformation reproducing the infinitezimal one and

preserving its form under composition of two transformations

•
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Denoting

e[α,β,γ] ≡ eαφ+βχ+γσ

and

h[α,β,γ] =
1

2
(−α2 + β2 + γ2)− α− β

2
− 3γ

2

the straightforward computation of the infinitezimal transformation, using the
OPE with the stress tensor gives

•

δǫ(B
[αn,βn,γn]
n e[α,β,γ])

= ǫ∂(B
[αn,βn,γn]
n e[α,β,γ]) + ∂ǫ(n + h[α,β,γ])B

[αn,βn,γn]
n e[α,β,γ]

+

n+1∑
k=2

n!

(n− k + 1)!k!
∂kǫ(z)[kh[αn,βn,γn] + n− k + 1

+(α2n − αnα− β2n + βnβ − γ2n + γnγ)]B
[αn,βn,γn]
n−k+1 e[α,β,γ](z)

•
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Using the fact that

Bn(log(f
′(z)))|f (z)=z+ǫ(z) = ∂nǫ(z) +O(ǫ2)

and the binomial property of Bn(f ):

Bn(f (x) + g(x)) ≡ Bn(∂(f + g), ..., ∂n(f + g)) =

n∑
k=0

n!

k!(n− k)!
Bk(f )Bn−k(g)

we find the string field components transform under z → f (z) according to:

•

B
[αn,βn,γn,]
n e[α,β,γ](z) → (

df

dz
)n+h

[α,β,γ]
B
[αn,βn,γn]
n e[α,β,γ](f (z))

+

n+1∑
k=2

n!

k!(n− k + 1)!
(
df

dz
)n−k+1+h

[α,β,γ]
Bk−1(λ(k, n, h

[αn,βn,γn])log(f ′(z)))

×B[αn,βn,γn]
n−k+1 e[α,β,γ](f (z))

with the weight factor λ given by
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•

λ(k, n, h[αn,βn,γn]) = kh[αn,βn,γn] + n− k + 1

+α2n − αnα− β2n + βnβ − γ2n + γnγ

•
The next step is to compute the commutator Ψ with the BRST charge:

Q =

∮
dz{cT − bc∂c− 1

2
γψm∂X

m − 1

4
bγ2} (4)

•
Since we are looking for the pure ghost solution, Ψ carries b − c ghost number

1 and << QΨ,Ψ >> has to carry b− c ghost number 3, the correlator will only
be contributed by the commutator of Ψ with Q =

∮
dz{cT − bc∂c}.

•
The straightforward computation of the relevant terms of Q(I ◦ Ψ) gives
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Q(I◦B[α,β,γ,]
n e[α,β,γ])(w)|

w=−1
z

=

n+1∑
k=1

n!

k!
× [(k − δk1 )h

[αn,βn,γn] + δk1h
[α,β,γ,]

+(1− δk1 )(α
2
n − αnα− β2n + βnβ − γ2n + γnγ)]

×w2(h[α,β,γ,]+n−k+1)Bk−1(x1, ...xk)|xj=(−1)j2(k−1)!wj;j=1,...,k

×{
n−k+1∑
l=1

n−k+1−l∑
m=0

(−1)m

(n− k − l + 2)!(l +m)!
× [(l − δl1)h̃

[αn,βn,γn] + δl1h̃
[α,β,γ,]

+(1− δl1)(α
2
n − αnα− β2n + βnβ − γ2n + γnγ)]

×

∂l+mcB
n−k−l−m+2|n−k−l+2
001|αnβnγn e[α,β,γ](w)}+

∑n
k=1

(−1)k

(k−1)!
[∂
k+1c
k+1 B

n−m|n
001|αnβnγne

[α,β,γ]](w)

+k−1∂kc∂(B
n−m|n
001|αnβnγne

[α,β,γ](w)) + c∂(B
[αn,βn,γn,]
n e[α,β,γ])(w)

•
Here B

m|n
pqr|αβγ are the conformal dimension m polynomials in bosonized ghost

fields appearing in the OPE of Bell polynomials with exponential fields, defined
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according to:

•

B
[αn,βn,γn,]
n (z1)e

[p,q,r](z2) =

n∑
m=0

: B
m|n
pqr|αβγ(z1)e

[p,q,r](z2) :

(z1 − z2)n−m

(note the upper script for Bm|n chosen here in order not to confuse them with
the incomplete Bell polynomials)

•
It is straightforward to compute the manifest expressions for B

m|n
pqr|αβγ. We get

B
m|n
pqr|αβγ =

(−1)n−mn!
(n−m)!m!

n∑
k=1

min(n−m;k)∑
l=max(1;k−m)

Bn−m|l(0!, 1!, ..., (n−m− l)!)B
[α,β,γ]
m|k−l

Here B
{α,β,γ}
m|k−l are the incomplete Bell polynomials in the ghost fields.

•
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The numerical coefficients Bn−m|l(0!, 1!, ..., (n − m − l)!) given by the values

of incomplete Bell polynomials Bn−m|l(x1, ...xn−m−l+1) at xj = (j − 1)!(j =

1, ...;n−m− l + 1) and coincide with (n−m)’th order expansion coefficients of
logl(1 + x) around x = 0.

•
We are now prepared to compute the SFT correlators relevant to

our ansatz solution

•
To compute the correlators, the following OPE’s are of importance:

B
[α,β,γ]
n (z)e[p,q,r](w) =

n∑
k=1

k∑
l=o

n−k+l∑
m=l

(z − w)−m

× n!

m!(n−m)!
Bm|l(0!, 1!, ...(m− l)!) : B

[α,β,γ]
n−m|k−l(z)e

[p,q,r](w) :

•
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B
[α,β,γ]
n1|k1 (z)B

[p,q,r]
n2|k2 (w) =

min(k1,k2)∑
l=0

n1−k1+l∑
m1=l

n2−k2+l∑
m2=l

(z − w)−m1−m2
n1!n2!

(n1 −m1)!(n2 −m2)!

ΛBell(m1,m2|l) : B[α,β,γ]
n1−m1|k1−l(z)B

[p,q,r]
n2−m2|k2−l : (w)

where the generalized Bell numbers ΛBell(m1,m2|l) are defined as follows. Let
0 < p1 ≤ p2...≤pl and 0 < q1 ≤ p2...≤ql
be the ordered length l partitions of m1 and m2. Then

ΛBell(m1,m2|l) = m1!m2!

partitions∑
m1|p1,...,pl

partitions∑
m2|q1,...,ql

pairings∑
pik

;qjk ;ik,jk=1,...,l

(pi1 + qj1 − 1)!...(pil + qjl − 1)!

p1!...pl!q1!...ql!rp1!...rpl!rq1!...rql!

where
rp,q are multiplicities of p and q entering the partitions. We furthermore impose
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the weak cohomology constraints on Ψ: :

Γ(z)Ψ−(w) ∼ O(z − w)0

: ΓΨ− :≈ 0

and similarly for Γ−1,Ψ+ to ensure that SF components of different ghost numbers
are not related by picture-changing (up to terms irrelevant to correlators). Here
Γ,Γ−1 are the direct and inverse picture changing operators This fixes βn =
0, γn = 1, n ≤ N + 1
With these identities, the computation of

<< Ψ, QΨ >>=< Ψ(0)I ◦QΨ(0) >
and

<< Ψ,Ψ ⋆ Ψ >>=< f31 ◦ Ψ(0)f32 ◦ Ψ(0)f33 ◦ Ψ(0) >

is straightforward and leads to the following ρ
n|n1;n2
N |N1;N2

coefficients in the recur-

rence relation for λNn defining the analytic solution:

ρ
n|n1;n2
N |LN1;N2

=
(κ3)

n|n1;n2
N |N1;N2

(κ2)
n
N

19



where
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(κ2)
n|n1;n2
N |L =

n+1∑
k=1

n−k+1∑
l=1

n−k−l∑
m=0

n∑
L1=0

(n!)2

(n− k − l −m + 2)!(l +m− 1)!(n− L1)!

{[(k − δk1 )h
[n,0,0] + δk1h

[−(N+2),0,1] + (1− δk1 )((N + 2)(n + 1)− 1)]

×[(l − δl1)h̃
[n,0,0] + δl1h̃

[−(N+2),0,1] + (1− δl1)((N + 2)(n + 1)− 1)]

×
n∑

k1=1

l+m−1∑
k2=1

n−k−l+2∑
k3=1

min(L1;k1−1)∑
l1=1

min(m,k3−1)∑
l2=1

(−1)k+l1+l2+L1

(2 + n(N + 2))l1BL1|l1(0!, ..., (L1 − l1)!)BL2|l2(0!, ..., (L2 − l2)!)

×
k3−l3∑
q=1

n+2−k−l−m−k3+l2−q∑
M=1

(nN − 1)qBM |q(0!, ..., (M − q)!)

×
n−L1−k1−l1−k3+l2+q∑

Q=k3−l2−q

(−1)Q+n−L1(n− L1)!

Q!(n− L1 −Q)!
ΛBell(Q;n + 2− k − l −m−M |k3 − l3 − q)

×[nk2δ
k1−k3−l1+l2+q
k2

ΛBell(n− L1 −Q; l +m− 1|k2)
−(l +m− 1)nk2−1δ

k1−k3−l1+l2+q
k2−1 ΛBell(n− L1 −Q; l +m− 2|k2)]}
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(κ3)
n|n1;n2
N |N1;N2

=

n+1∑
k=1

n1+1∑
k1=1

n2+1∑
k2=1

n!n1!n2!

(n− k + 1)!(n1 − k1 + 1)!(n2 − k2 + 1)!k!k1!k2!

×[(k − δk1 )h
[n,0,1] + δk1h

[N,0,1] + (1− δk1 )(n
2 − nN)]

×[(k1 − δ
k1
1 )h[n1,0,1] + δk1h

[−N1−2,0,1] + (1− δ
k1
1 )(n21 + n1(N1 + 2))]

×[(k2 − δ
k2
1 )h[n2,0,1] + δ

k2
1 h

[−N2−2,0,1] + (1− δ
k2
1 )(n22 + n2(N2 + 2))]

(
2

3
)h

[N,1,1]+h[−N1−2,0,1]+h[−N2−2,0,1]+n+n1+n2−k−k1−k2 × (Γ(43))
3

Γ(43 − k)Γ(43 − k1)Γ(
4
3 − k2)

×
n−k+1∑
m=1

(n1−k1+1)∑
m1=1

(n2−k2+1)∑
m2=1

m∑
s1=0

m−s1∑
s2=0

m1∑
t1=0

m1−t1∑
t2=0

m2∑
u1=0

m2−u1∑
u2=0

(n−k+1−m+s1)∑
L1=s1

(n−k+1−m+s2−L1)∑
L2=s2

(n1−k1+1−m1+t1)∑
M1=t1

(n1−k1+1−m1+t2−M1)∑
M2=t2

(n2−k2+1−m2+u1)∑
P1=u1

(n2−k2+1−m2+u2−P1)∑
P2=u2

{BL1|s1(0!, 1!, ..., (L1 − s1)!)BL2|s2(0!, 1!, ..., (L2 − s2)!)

BM1|t1(0!, 1!, ..., (M1 − t1)!)BM2|t2(0!, 1!, ..., (M2 − t2)!)

BP1|u1(0!, 1!, ..., (P1 − u1)!)BP2|u2(0!, 1!, ..., (P2 − u2)!)
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(−(N1 + 2)n− 1)L1(−(N2 + 2)n− 1)L2(−n1N + 1)M1

(−n1(N2 + 2)− 1)M2(−n2N − 1)P1(n2(N1 + 2) + 1)P2

(
√
3)N(N1+2)−(N1+2)(N2+1)+2−L1−M1−M2−P2(2

√
3)N(N2+2)+1−L2−P1}

×(−nn1 + 1)
1
2(m+m1−m2−s1−s2−t1−t2+u1+u2)(−nn2 + 1)

1
2(m+m2−m1−s1−s2+t1+t2−u1−u2)

×(−n1n2 + 1)
1
2(−m+m1−m2+s1+s2−t1−t2+u1+u2)

n−k+1+1
2(m+m1−m2−s1−s2−t1−t2+u1+u2)∑

R1=
1
2(m+m1−m2−s1−s2−t1−t2+u1+u2)

n1−k1+1+1
2(m+m2−m1−s1−s2+t1+t2−u1−u2)∑

R2=
1
2(m+m2−m1−s1−s2+t1+t2−u1−u2)

n2−k2+1+1
2(−m+m1−m2+s1+s2−t1−t2+u1+u2)∑

R3=
1
2(−m+m1−m2+s1+s2−t1−t2+u1+u2)

(
√
3)−R1+R3(2

√
3)−R1−R3ΛBell(R1;R2|

1

2
(m +m1 −m2 − s1 − s2 − t1 − t2 + u1 + u2))

×ΛBell(R1;R3|
1

2
(m +m2 −m1 − s1 − s2 + t1 + t2 − u1 − u2))

×ΛBell(R2;R3|
1

2
(−m +m1 −m2 + s1 + s2 − t1 − t2 + u1 + u2))}
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4. Bell polynomials and higher spin algebras

Our main conjecture is that the solution discussed in this talk is related to
collective higher-spin vacuum, in the spirit similar to relating the solution by Erler,
Schnabl, et.al. to tachyon vacuum.
In general, our hope is that the higher spin algebras can be realized as operator

algebras in string theory.
The first insightful hint, relating Bell polynomials to free field realizations of

higher spin algebras in AdS, comes from c = 1 model, i.e. one-dimensional non-
critical string theory.
The one-dimensional string compactified on S1 has no standard massless modes

(like a photon) but does have a SU(2) multiplet of massless states existing at non-
standard ghost numbers and discrete mumentum values (Klebanov, A. Polyakov,
Witten, 1992):
The SU(2) symmetry at self-dual radius R = 1√

2
is realized by the operators:

T± =

∮
dze±iX

√
2;T0 =

∮
dz∂X

The SU(2) multiplet of discrete states can be constructed by acting with the
lowering T− of SU(2) on the highest weight vectors given by tachyonic primaries

27



Vl = e(ilX+(l−1)ϕ)
√
2: (with integer l)

Ul|m = T l−m− Vl

Manifest expressions for Ul|m vertex operators are complicated, however, their
structure constants have been deduced by I. Klebanov, A. Polyakov and E.Witten
in 1991 by using symmetry arguments. One has

Ul1|m1
(z)Ul2|m2

(w) ∼ (z − w)−1C(l1, l2, l3|m1,m2,m3)f (l1, l2)Ul3,m3

where the SU(2) Clebsch-Gordan coefficients are fixed by the symmetry while
the function of Casimir eigenvalues f (l1, l2) is nontrivial and was deduced to be
given by

f (l1, l2) =

√
l1 + l2(2l1 + 2l2 − 2)!√
2l1l2(2l1 − 1)!(2l2 − 1)!

(I. Klebanov, A. Polyakov,Mod.Phys.Lett. A6 (1991) 3273-3281, E. Witten,
Nucl.Phys. B373 (1992) 187-213)
Remarkably, these structure constants coincide exactly with those of higher spin

algebra in AdS3 in a certain basis, computed by E. Fradkin and V. Linetsky in
1989, in , what appeared at that time a completely different context (E. Fradkin, V.
Linetsky, Mod.Phys.Lett. A4 (1989) 2635-2647) On the other hand, the explicit
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structure of the vertex operators for the discrete states realizing this algebra is
given by

Ul|m ∼
∑

1
2(l(l−1)−m(m−1))|p1,...,pl−m

Bp1(−iX
√
2)...Bpl−m(−iX

√
2)e

√
2(imX+(l−1)ϕ)

with the sum taken over ordered partitions of 12(l(l− 1)−m(m− 1))|p1, ..., pl−m
This is a relatively simple example of Bell polynomials multiplied by exponentials

realizing the higher spin algebras in AdSd in terms of vertex operator algebras
in d − 1-dimensional string theory. More complicated examples, such as the v.o.
realizations of HS algebras in AdS5, can also be constructed (D.P., in preparation).
Our main conjecture is that the OSFT solutions of the type:

Ψ =
∑

N,n1,...,nk

λ
n1...nk
N Bn1(φ, χ, σ)...Bnk(φ, χ, σ)(cξe

Nφ + ce−(N+2)φ)

can be related to vacuum configurations of k-row higher spin fields with mixed
symmetries.
In general, the space of these solutions would form an “enveloping” of higher-spin

algebra
From the onshell prospective, another hint at the higher spins comes from the

structure of the vertex operators for higher spin fields in Vasiliev’s formalism.
29



Namely, consider open string vertex operators for Vasiliev type two-row higher

spin gauge fields Ω
a1...as−1|b1...bt
m (x) ≡ Ωs−1|t(x)(0 ≤ t ≤ s− 1) where m is

the curved d-dimensional space index and a, b indices (corresponding to rows of
lengths s − 1 and t) label d-dimensional tangent space. In case of t = s − 3 the
expression for the spin s operator particularly simplifies and is given by:

Vs−1|s−3(p) ≡= Ω
a1...as−1|b1...bs−3
m (p)V ma1...as−1|b1...bs−3

(p)

= Ω
a1...as−1|b1...bs−3
m (p)

∮
dze−sφψm∂ψb1∂

2ψb2...∂
s−3ψbs−3

∂Xa1...∂Xas−2e
ipX

at minimal negative picture −s. The manifest expressions for the spin s operators
with 0 ≤ t < s− 3 are generally more complicated, however, at their canonical
pictures equal to −2s+ t+3, they can be related to the operator V m

a1...as−1|b1...bs−3

: Γs−t−3Ω
a1...as−1|b1...bt
m (p)V ma1...as−1|b1...bt : (p)

= Ω
a1...as−1|b1...bs−3
m (p)V ma1...as−1|b1...bs−3

(p)

where Γ =: eφG : is the picture-changing operator satisfying : ΓmΓn :=:
Γm+n : +{Qbrst, ...}, G is the full matter+ ghost worlsheet supercurrent and
: Γn :∼: enφG∂G...∂n−1G : This particularly entails a set of generalized torsion
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zero constraints relating the space-time extra fields in the frame-like formalism for
the higher spins:

Ωs− 1|s− 3(x) ∼ ∂s−3−tΩs−1|s−3(x)

Corresponding operators at positive ghost numbers can be obtained by homotopy
mapping (D.P., 2013)
The operators for for the frame-like fields of spin s ≥ 3 are the elements of ghost

cohomologies H−s ∼ Hs−2 (refs). The structure of their OPE:

Hs1 ⊗Hs2 ∼
s1+s2−2∑
k=|s1−s2|

Hk (5)

coincides with the general structure of the HS algebra in AdS
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5. Conclusion and discussion

•
We have considered a pure ghost SFT solution at higher ghost numbers, a sim-

plest in the family of other solutions (involving multiple Bell polynomials) which
are still to be found

•
Combined together, they presumably describe the ghost part of collective higher

spin vacuum with mixed symmetries

•
A concept of Bell polynomials being a free field realization of HS algebra in AdS

needs to be elaborated

•
Plenty of work ahead!
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