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•

1. GHOST COHOMOLOGIES: INTUITIVE DESCRIPTION

•

Consider a gauge theory with gauge group G with the algebra g generated by
{T a}; a = 1, ..., n satisfying

[T a, T b] = fabc T
c

Consider the corresponding antighost field ba of the opposite statistics in the
adjoint of g and its canonical conjugate ghost field ca, satisfying

{ba, cb} = δab

{ba, bb} = {ca, cb} = 0

•

By definition, ba carry ghost number −1 and ca carry ghost number 1.

•
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Define the BRST charge Q of ghost number 1 according to:

Q =
∑

a

caTa −
1

2

∑

a,b,c

fabc cacbb
c (1)

•

It is straighforward to show that Q2 = 0, provided that fabc satisfy Jacobi
identities.

•

The gauge theory, symmetric under gauge transformations in-
duced by T a, is also symmetric under BRST transformations in-
duced by Q

•

The BRST symmetry transformations are structurally similar to the original
gauge transformations, but have the opposite statistics, with the gauge parameters
ǫa replaced by the ghost fields ca.

•
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The physical states (local operators) |ψ > of the gauge theory are the objects
given by the elements of the BRST cohomology:

Q|ψ >= 0

|ψ > 6= Q|ϕ >

where |ϕ > is any other local operator constructed out of the fields of the theory.

•

The ghost cohomology Hn(n 6= 0) is defined as a subset of physical
states (BRST cohomology) that carry ghost number n, such that:

•

1.They are BRST-invariant but not manifestly gauge invariant, i.e. for any
|ψ >⊂ Hn

Q|ψ >= 0

T a|ψ > 6= 0 (2)

•

2. They are not related to any state of lower ghost number n− 1 by any gauge
and/or BRST transformation (for n > 0) or to any state of higher ghost number
n + 1 (for n < 0).
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•

3.H0 is empty, i.e. any state of ghost number 0 the BRST-invariance always
implies the gauge invariance.

•

Ghost cohomologies are typically related to hidden global sym-
metries of the theory and/or contain crucial information about
nonperturbative degrees of freedom

•

For example, in QCD objects like those describe the gluon-ghost condensate,
conjectured to play important role in quark confinement and emergence of mass
gap in QCD (e.g. K.-I. Kondo, Phys.Lett. B572 (2003) 210-215)

•

In string theory, ghost cohomologies are related to global symmetries, corre-
sponding to hidden space-time dimensions, emergent AdS space, background in-
dependence and vertex operator realizations of higher-spin algebras in AdS spaces.

•

In the rest of the talk, I shall limit myself to string-theoretic realization of the
Ghost cohomologies.
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2. Ghost Cohomologies - Definition and Realization in String
Field Theory

•

Consider RNS superstring theory (critical or noncritical) in d-dimensional flat
space-time. The action in superconformal gauge is
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SRNS = Smatter + Sbc + Sβγ + SLiouville

Smatter = −
1

4π

∫

d2z(∂Xm∂̄X
m

+ψm∂̄ψ
m + ψ̄m∂ψ̄

m)

Sbc =
1

2π

∫

d2z(b∂̄c + b̄∂c̄)

Sβγ =
1

2π

∫

d2z(β∂̄γ + β̄∂γ̄)

SLiouville = −
1

4π

∫

d2z(∂ϕ∂̄ϕ + ∂̄λλ

+∂λ̄λ̄ + µ0e
Bϕ(λλ̄ + F ))

whereXm(m = 0, ...D − 1) are the space-time coordinates; ψm are superpartners
of Xm on the worldsheet, (b, c) are fermionic reparametrization ghosts and (β, γ)
are superconformal ghosts. (ϕ, λ, F ) are components of the super Liouville field

and the Liouville background charge is q = B +B−1 =
√

9−D
2

•

What are the global symmetries of this action?

•
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First of all, it is obviously invariant under Poincare algebra of translations and
Lorentz rotations, generated by worldsheet integrals of conformal dimension 1
primary fields:

Mp =

∮

dz

2iπ
∂Xp(z)

Mpq =

∮

dz

2iπ
(
1

2
X [p∂Xq] + ψpψq) (3)

•

Note that massless physical excitations in open and glosed string theory (such
as a photon or a graviton) are related to the Poincare generators:

Vph(k)

= Ap(k)

∮

dz

2iπ
(∂Xp + i(kψ)ψp)eikX(z)

Vgr(k) = Gpq(k)

∫

d2z(∂Xp + i(kψ)ψp)

×(∂̄Xp + i(kψ̄)ψ̄q)eikX(z, z̄)
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so in the zero momentum limit k = 0 the photon is simplythe translation gener-
ator, while the graviton is bilinear in translations

•

However, apart from the standard Poincare symmetries, the superstring action
is also invariant under surprising ghost-matter mixing symmetries, realized non-
linearly.

•

Namely, bosonize the ghost fields according to:

c = eσ(z); b = e−σ(z)

γ = eφ−χ(z); β = eχ−φ∂χ(z) (4)

•

Here φ, χ and σ are free 2D bosons with the standard propagators:

< φ(z)φ(w) >= − < χ(z)χ(w) >

= − < σ(z)σ(w) >= −log(z − w)
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•

Then the RNS action is invariant under the following symmetry transformations:
(D.P.,Phys.Rev. D82 (2010) 066005):

•

δXp = α(∂(eφψp) + 2eφ∂ψp)

δψp

= −α(2∂(eφ∂Xp) + 2eφ∂2Xp)

δγ = αe2φ−χ(ψp∂
2Xp

−2∂ψp∂X
p)

δβ = δb = δc = 0 (5)

•

Under these transformations, the variation of the matter part of the superstring
action is cancelled by that of the ghost part:

•
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δSmatter = −δSghost

=

∫

d2z[∂̄(eφ)(ψp∂
2Xp

−2∂ψp∂X
p)]

•

The generator of these transformations is given by

•

T =

∮

dz

2iπ
eφ(ψp∂

2Xp − 2∂ψp∂X
p)

•

There also exists a dual copy of the symmetry transformations obtained by
replacing φ→ −3φ, with the generator given by

•
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T̃ =

∮

dz

2iπ
e−3φ(ψp∂

2Xp − 2∂ψp∂X
p)

•

Remark 1: both T and T̃ are the integrals of dimension 1 primary fields, as
conformal dimensions of both eφ and e−3φ are the same and equal to −3

2; the
matter factor in the both of the generators is the same. It is a primary field of
dimension 5

2

•

Remark 2: Both T and T̃ commute with the Poincare generators (up to BRST-
exact terms)

•

Switching on the Liouville mode, it is straightforward to generalize the α-symmetry
transformations to the vector generators. Namely, the RNS action is also invariant
under the transformations generated by

•
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Tm =

∮

dz

2iπ
eφ(λ∂2Xm − 2∂λ∂Xm

+∂2ϕψm − 2∂ϕ∂ψm)

Tmn =

∮

dz

2iπ
(ψmψn − 2eχ−φψ[m∂Xn]

+4ce2χ−2χψmψn)

•

As before, the ghost number −3 version of the vector Tm-generators is straight-
forward to construct, simply by replacing φ→ −3φ . The generators satisfy (D.P.,
Phys.Rev. D84 (2011) 126004)

•

[Tm, Tn] = −Tmn (6)

•
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The appearance of the minus sign is highly nontrivial, stemming from cumber-
some calculations involving ghost picture-changing transformations The rest of the
commutators are identical to those of the Poincare algebra.

•

This means that altogether the Tm and Tmn generators realize the
isometry algebra of the AdS space. It is important to stress that
they all commute with the standard Poincare generators . This
means that the RNS superstring action possesses both flat and
AdS space global isometries, completely detached from each other

•

An important property of the AdS isometry Tm-generators is their essential
ghost coupling, as they carry either +1 or dual −3 β−γ ghost charge. This ghost
coupling cannot be removed by any gauge (picture-changing) transformation and
is related to the appearance of the ghost cohomologies in string theory. Below I
shall describe it in more details
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VERTEX OPERATORS AND GHOST COHOMOLOGIES IN STRING
THEORY

•

The BRST operator in RNS string theory is straightforward to construct accord-
ing to the original prescription and it is given by

•

Q =

∮

dz

2iπ
[cT − bc∂c−

1

4
bγ2

−
1

2
γ(ψp∂Xp + λ∂ϕ +

q

2
∂λ)]

•

It is straightforward to check thatQ2 = 0. The physical states (vertex operators)
{V } in string theory, describing emissions of various particles and/or solitons by
a string, are defined as the elements of the BRST cohomology:

•
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{Q, V } = 0

V 6= {Q, ...} (7)

•

Typically, the vertex operators in superstring theory are the objects of the form:

V (k) ∼

∮

dz

2iπ
[emχ+nφ+ikX

P (∂X, ∂2X, ..., ψ, ∂ψ, ...∂φ, ∂2φ, ...)

where k is the momentum, P is polynomial of a certain degree in derivatives of
the matter and the bosonized ghost fields φ, χ and σ.

•

The number m + n (integer or half-integer) is called the picture of the vertex
operator.

•

In general, one and the same physical operator admits infinitely many different
picture representations.
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•

That is, consider a physical vertex operator VN at picture N . Given VN , one
can construct physically equivalent operators at higher or lower pictures by using
direct and inverse picture-changing transformations. Namely,by using the direct
and inverse picture-changing operators:

•

Γ =: δ(β)G : (z)

= −
1

2
eφψm∂X

m +
1

4
e2φ−χb(∂χ + ∂σ)

+ceχ∂χ(z)

Γ−1 = −4ceχ−2φ∂χ(z)

: Γ−1Γ := 1 (8)

•

one can raise and lower the ghost pictures using the normally ordered operator
product expansions:

•
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VN+1 =: ΓVN :

VN−1 =: Γ
−1VN : (9)

•

Standard perturbative vertex operators in string theory (such as
a photon) or Poincare generators can thus be represented at any
positive or negative picture

•

For example, the photon operators at pictures −2, −1 and 0 are

V−2 = Ap(k)

∮

dz

2iπ
e−2φ∂XpeikX(z)

V−1 = Ap(k)

∮

dz

2iπ
e−φψpeikX(z)

V0(k) = Ap(k)

∮

dz

2iπ
(∂Xp + i(kψ)ψp)eikX(z)

•
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At k = 0 these expressions reduce to various picture representations of the trans-
lation generator in Poincare algebra. So for these operators the ghost dependence
is merely an artefact of a gauge choice and can be removed by combination of
picture transforms to picture zero.

•

We will refer to these operators as elements of zero ghost cohomology H0. In
case of the AdS isometry generators , however, things are crucially different. Their
ghost couplings are essential and cannot be removed by picture transforms, as they
admit no zero picture representations.
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•

The AdS transvection Tm-generator exists at minimal picture +1 and can be
transformed to any picture N > 1 by

TmN =: ΓN−1Tm1

, however it is annihilated by the inverse picture changing:

: Γ−1Tm1 := 0

and does not admit representations at pictures below 1.

•

Similarly, the picture −3 representation of the Tm-generator exists at minimal
negative picture −3 and below; it can be transformed to any picture N < −3 by
combination of N − 3 inverse picture changing transformations:

TmN =: Γ3−NTm−3 :

however it is annihilated by direct picture changing transformation at picture
−3:

: ΓTm−3 := 0

and does not admit representations at pictures above −3
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•

A direct operator isomorphism, preserving BRST invariance, can be constructed
between −3 and +1 representations of Tm (D.P. Phys.Rev. D82 (2010) 066005)
TheAdS isometry transformations are convenient to classify in terms ofGHOST

COHOMOLOGIES, defined as follows:

•

Positive ghost cohomologiesHn consist of physical (BRST-invariant and nontriv-
ial ) vertex operators existing at picture n ≥ 1 and above, annihilated at minimal
picture n by Γ−1-transformation

•

Negative ghost cohomologies H−n consist of physical (BRST-invariant and non-
trivial ) vertex operators existing at picture n ≥ 3 and below, annihilated at
minimal negative picture−n by Γ-transformation

•

Positive and negative ghost cohomologies are isompophic (D.P. Phys.Rev. D82
(2010) 066005) :

Hn∼H−n−2(n ≥ 1)
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•

H−1 and H−2 are empty while H0 consists of picture-equivalent operators, ad-
mitting picture 0 representation.

•

The Poincare symmetry algebra in superstring theory is thus generated by the
operators of H0 while AdS isometry algebra is generated by operators of H1 ∼
H−3.
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•

Given the hidden global space-time symmetries of superstring theory, stemming
from H1 ∼ H−3-generators, are there also the global symmetries associated with
operators of higher rank cohomologies Hn ∼ H−n−2 with n ≥ 2?

•

The answer to this question is positive: In particular, it is straightforward to
show that the RNS action is invariant under global transformations generated by
the following currents of Hs−2 ∼ H−s(s ≥ 3):

T s−1|s−2 ≡ T a1...as−1|b1...bs−2

=

∮

dz

2iπ
e(s−2)φ∂ψ(b1∂

2ψb2...∂
s−3ψbs−2)

×∂Xa1...∂Xs−1

∼

∮

dz

2iπ
e−sφ∂ψ(b1∂

2ψb2...∂
s−3ψbs−2)

×∂Xa1...∂Xs−1

•

These currents are the two-row operators, symmetric in a and b-indices. Com-
bined with the AdS isometry generators of H1 ∼ H−3, the global symmetries
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induced by Hs−2 ∼ H−s(3 ≤ s ≤ ∞) generators form the infinite-dimensional
algebra.

•

The AdS isometry algebra is the maximal finite-di mensional subalgebra of this
algebra. The full symmetry algebra of the larger superstring theory turns out to
be isomorphic to the higher spin algebra in AdS
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HIGHER SPIN FIELDS AND VASILIEV’S FRAME-LIKE
FORMALISM

In the simplest formulation, the higher spin field theory is the theory of symmetric
tensor fields of rank s satisfying the Pauli-Fierz on-shell conditions:

∂p∂
pHm1...ms(x) = 0

∂m1H
m1...ms(x) = 0

Hm
mm1...ms−2 = 0 (10)

invariant under the gauge transformations with traceless and divergence free
rank s− 1 gauge parameter:

δHm1...ms = ∂(msΛm1....ms−1) (11)

Because of the vast gauge symmetry, necessary to eliminate negative-norm states,
constructing consistent gauge-invariant interacting HS theories is a highly nontriv-
ial and complicated problem, to large extent unresolved (with the exception of few
examples) Even in the non-interacting case the action was not known until after
1978 when it was constructed by Fronsdal:

•
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S =

∫

dDx{∂mHm1...ms∂
mHm1...ms

−(s− 1)s∂mH
n
nm3...ms

∂mH
nm3...ms
n

+s(s− 1)∂mH
n
nm3...ms

∂pH
pmm3...ms

−s∂mHmm2...ms∂nH
nm2...ms

−
(s− 2)(s− 1)s

4
∂mH

nmm4...ms
n ∂pH

pqm4...ms
q }

•

In the interacting case, Coleman-Mandula’s theorem forbids the existence of
consistent interacting theories beyond spin 2, unless one compromises on locality
and unitarity or considers these theories in the AdS space where no well-defined
boundary S-matrix exists, making it possible to circumvent the assumptions of the
theorem.

•

Higher spin fields inAdS are known to constitute crucial a ingredient ofAdS/CFT
correspondence and holography principle , as they are related to the major part
of the operators on the CFT side.
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•

Higher spin fields also inevitably appear in theories involving extra space-time
dimensions. For this reason understanding their dynamics is a deep and profound
physical problem.

•

It turns out that the higher spin interacting theories are far more natural objecta
to describe using Vasiliev’s frame-like formalism (a higher-spin extension of Cartan-
Weyl frame description of gravity using vielbeins and spin connections instead of
the metric) then the metric approach (in particular, used by Fronsdal).

•

String theory turns out to be a particularly efficient and promising framework
to describe higher spin dynamics; the vertex operator description of higher spin
modes in superstring theory naturally fits the frame-like formalism

•

In the frame-like formalism, a symmetric higher spin gauge field of spin s is

described by collection of two-row fields Ωs−1|t ≡ Ω
a1...as−1|b1...bt
m (x) with0 ≤ t ≤

s− 1 and the rows of lengths s− 1 and t.

•
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The only truly dynamical field of those is Ωs−1|0 while the fields with t 6= 0,
called the extra fields, are related to the dynamical one through generalized
zero torsion constraints:

Ωs−1|t ∼ D(t)Ωs−1|0 (12)

where D(t) is the order t linear differential operator preserving the symmetries
of the appropriate Yang tableaux. There are altogether s − 1 constraints for the
field of spin s.

•

As for the dynamical
Ωs−1|0-field (symmetric in all the a-indices), it splits into two diagrams with

respect to the manifold m-index.

•

Assuming the appropriate pullbacks, the one-row symmetric diagram describes
the dynamics of the metric− like symmetric Fronsdal’s field of spin s while the
two-row component of Ωs−1|0 can be removed by appropriate gauge transforma-
tion.

•
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The gauge transformations and transversality constraints on Ω are given by

δΩ
a1...as−1|b1...bt
m = Dmǫ

a1...as−1|b1...bt

ηa1a2Ω
a1...as−1|b1...bt
m = 0

•

The generalized Cartan’s 1-form is defined according to

U = (eam(x)Ta + ωabmTab

+

∞
∑

s=3

s−1
∑

t=0

Ω
a1...as−1|b1...bt
m Ta1...as−1|b1...bt

)dxm

•

Here eam and ωabm are vielbein and spin 2 connection, Ω’s are frame-like higher
spin fields. Ta and Tab are isometry generators of underlying space-time (such as
AdSD).

•
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Combined with these isometry generators, the higher spin currents Ta1...as−1|b1...bt
generate infinite-dimensional higher spin algebra on AdSD

•

Some examples: for D = 2 the HS algebra is isomorphic to Virasoro algebra,
for D = 3 it is related tow∞; for higher D’s the higher spin algebras are more
complicated objects.

•

Structurally, the HS algebras are given by

[T s1|t1, T s2|t2]

∼

s1+s2−2
∑

s=|s1−s2|+1

s−1
∑

t=0

C
s1,s2|t1,t2
s|t

T s|t (13)

The generalized higer spin curvature 2-forms are defined according to

R
a1...as−1|b1...bt
mn ≡ Rs−1|t = dΩs−1|t +

∑

s1,s2,t1,t2

(Ωs1−1|t1 ∧ ⋆Ωs2−1|t2)s|t
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Here ⋆ is the associative product in the higher spin algebras. Note that a curvature
of any rank is contributed by infinite number of terms, originating from the 1-forms
of any spin value.

•

The higher spin action is bilinear in R. Its complete form is unknown although
many approximations exist, particularly, in the linearized limit.

•

String theory provides a remarkable realization of higher spin algebras in AdS
in terms of vertex operators from ghost cohomologies Hs−2 ∼ H−s. These vertex
operators live in the “larger” string theory and are based on infinite dimensional
matter-ghost mixing global symmetries of string theory, induced by the generators
described above.

•

Higher Spin algebra in AdSD is realized as the operator algebra of vertex oper-
ators for the frame-like higher spin gauge fields in noncritical D-dimensional RNS
superstring theory.

•
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The OPE fusion rules for the vertex operators of nonzero ghost cohomologies are
identical to the structure of the higher spin algebras:

[Hs1](z1)⊗ [Hs2](z2) ∼

(z1 − z2)
−1

s1+s2−2
∑

s=|s1−s2|+1

[Hs](
z1 + z2

2
)

+[Qbrst, ...]

•

Explicit Construction of the VERTEX OPERATORS of higher cohomologies
(D.P. Phys. Rev. D. 89, 026010 (2014)):

•
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H−3 ∼ H1

V AdSph = Am(p)

∮

dz

2iπ
e−3φRmeipX

≡

∮

dz

2iπ
e−3φ+ipX

×{λ∂2Xm − 2∂λ∂Xm

+∂2ϕψm − 2∂ϕ∂ψm

+ipm(
1

2
∂2λ +

1

q
∂ϕ∂λ

−
1

2
λ(∂ϕ)2 +

(1 + 3q2)λ(3∂ψpψ
p −

1

2q
∂2ϕ))}

•

This massless open string operator is the element of H1 ∼ H−3 describes the
emission of a photon by an open string in AdS background, polarized along the
AdS boundary, and must not be confused with usual photon excitation in flat
string theory (the element of H0)

•
34



Just as the usual photon reduces to translation operator in flat space at p = 0,
the massless s = 1 operator in our model is reduced to AdS transvection generator
at zero momentum.

•

Next, in close string theory one is able to construct the the spin 2 ( graviton)
vertex operator at ghost cohomology H1 ⊗ H̄1 ∼ H−3 ⊗ H̄−3 describing the
gravitational fluctuations around the AdSD vacuum, polarized along the AdS
boundary (not to be confused with the “standard” string theory graviton, that
is the element of H0 ⊗ H̄0) and describes fluctuations around the flat vacuum.
Just as the standard graviton is the object bilinear in flat space translations, the
H1 ⊗ H̄1 graviton in our case is bilinear in AdS transvections.

•

The explicit expression for this operator is

V AdSgrav (p)

= Gmn(p)

∫

d2ze−3φ−3φ̄+ipXRmR̄n

•
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Next, the vertex operators for the frame-like symmetric higher spin s fields in
AdS space are the elements of Hs−2 ∼ H−s in open string theory and are given
by

•

Vs = Ωa1...as−1|b1...bs−2
(p)

∮

dz

2iπ
e−sφ+ipX∂Xa1...∂Xas−1

×ψb1∂ψ(b2...∂(s−3)ψbs−3)(z)

These are the operators for the Ωs−1|s−2 extra field in the frame-like formalism.

•

The operators for the remaining extra fields Ωs−1|t (0 ≤ t ≤ s− 3) are related

to those for Ωs|s−3 through generalized zero curvature relations in terms of ghost
cohomology conditions:

Ωs−1|s−2(p)V
s−1|s−2

= Ωs−1|t(p) : Γ
s−2−tV s−1|t : (14)
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•

Note that the operators V s−1|t for Ωs−1|t have negative canonical ghost pictures
t+2− 2s , however they are the elements of H−s. This cohomology condition en-
tails the zero torsion conditions for all the Ω’s in the list. The manifest expressions
for t < s− 2 are complicated.

•

BRST invariance conditions [Q, V ] = 0 for the above vertex operators lead to

onshell equations of motion for Am, Gmn and Ωs−1|t in AdS space.

•

The BRST nontriviality conditions V 6={Q,U} lead to the gauge transformations
on Ω’s: each gauge transformation on Ω leads to shifting the corresponding vertex
operators by BRST-exact terms irrelevant for the correlation functions.

•

Therefore the correlation functions of the vertex operators for the higher spin
fields, computed in string theory, produce the higher spin interaction terms, gauge-
invariant by construction.
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CONTRIBUTIONS to the β-FUNCTION.

In the leading order, the linearized contributions follow from the Weyl invariance
constraints on the vertex operators. The calculations are the standard ones,e.g.,
using the ǫ-expansion techniques. However, the crucial novelty in our case is the
appearance of the cosmological term. The cosmological term for βmn appears as
a result of nontrivial ghost dependence of V mn, i.e. as a result of V mn being an
element of nonzero cohomology H1⊗H̄1. Namely, the Weyl invariance constraints
can be conveniently deduced from the OPE:

∼

∫

d2z

∫

d2wTzz̄(z, z̄)Vgrav(w, w̄)

by expanding around the midpoint and evaluating the coefficient in front of

∼
Vgrav(

z+w
2 , z̄+w̄2 )

|z − w|2

(note that the trace Tzz̄ of the stress-energy tensor, generating the Weyl transfor-
mation, is nonzero in the underlying ǫ-expansion). For a usual graviton operator

∼ Gmn(p)

∫

d2w∂Xm∂̄XneipX(w, w̄)

in the bosonic string this procedure leads, after simple calculation, to the standard
β-function contribution, quadratic in momentum, given by the linearized part of
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the Ricci tensor plus the second derivative of the dilaton∼Rlinmn−2pmpnD with the
dilatonD ∼ tr(Gmn). The calculation, leading to the identical result, is similar in
superstring theory. The graviton operator must then be taken at canonical ghost
picture (unintegrated b− c picture and (−1,−1) β − γ ghost picture), so

Vgrav = cc̄e−φ−φ̄ψmψneipX

and

Tzz̄≡T
matter
zz̄

+T b−czz̄ + T
β−γ
zz̄

= −
1

2
(∂Xm∂̄X

m − ∂̄ψmψ
m

−∂ψ̄mψ̄
m + ∂σ∂̄σ

+∂χ∂̄χ− ∂φ∂̄φ)
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The OPE of Vgrav with Tmatterzz̄ then contributes the term ∼ p2Gmn to the
graviton’s beta-function (which is the gauge-fixed linearized part of the Ricci ten-
sor, with the gauge condition ∼ pmGmn = 0), while the contribution stemming

from the OPE with T b−czz̄ cancels the one from the OPE with T
β−γ
zz̄ since

•

∂σ∂̄σ(z, z̄)cc̄(w, w̄)

∼
1

|z − w|2
cc̄(w, w̄)

∂φ∂̄φ(z, z̄)e−φ−φ̄(w, w̄)

∼
1

|z − w|2
e−φ−φ̄(w, w̄)

•

and σ and φ-terms of Tzz̄ have opposite signs.

•

It is this cancellation that ensures the absence of “cosmological terms” in the β-
function of the graviton with the conventional vertex operator leading to Einstein
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gravity around the flat vacuum. In case of the vertex operator for the AdS graviton,

the OPE of Tmatterzz̄ with V
H−3⊗H−3
grav still leads to the linear part of the Ricci

tensor.However, since this operator is the element ofH−3 ⊗H−3, and its canonical

φ-ghost picture is (−3,−3) (refs), the contributions from T b−czz̄ and T
β−γ
zz̄ no longer

cancel each other:

•

(T b−czz̄ + T
β−γ
zz̄ )(z, z̄)V

H−3⊗H−3
grav (w, w̄)

∼
1
2(1− 32)V

H−3⊗H−3
grav

|z − w|2

leading to the cosmological term proportional to ∼4Gmn in the β-function. Thus
the Weyl invariance condition brings the piece proportional to

∼ Rlinearizedmn + 4gmn

to the β-function (assuming that the dilaton is switched off).

•

The computation of the leading order β-function contribution from the higher
spin vertex operators is analogous, leading to the following result for the Fronsdal
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metric-like field:

β
a1...as−1
m ≡ Λ

d

dΛ
Ω
a1...as
m = −p2Ω

a1...as−1
m (p)

+Σ1(a1|a2, ...as−1)ptp
a1Ω

a2...as−1t
m

−
1

2
Σ2(as−2, as−1|a1, ..., as−3)p

as−1pas−2

×(Ω′
m)

a1...as−3 − 4(s− 1)Ω
a1...as−1
m

where Σ1,2 are the Fronsdal’s symmetrization operators.

•

This precisely gives the equations of motion for the Fronsdal’s higher spin action
in AdS space, for the higher spin fields polarized along the AdS boundary. Again,
the ghost cohomology structure of the higher spin vertex operator is crucial to
ensure the emergent AdS geometry (D.P. Phys. Rev. D. 89, 026010 (2014))

•

The higher order contributions to the β-function are given by the worldsheet
N -point correlators of the higher spin vertex operators. At this point we mostly
have been able to compute the cubic couplings, although some particular quartics
for the higher spin were computed as well (D.P., Phys.Rev. D 2011)
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•

At the cubic order, inAdS4, the structure constants of HS algebra, computed this
way, reproduce the holographic cubic couplings of O(N) vector model in d = 3.
In AdS5, the structure constants particularly reproduce the gradient expansion in
holographic hydrodynamics in d = 4

•

Calculations beyond the cubic order generally require the modified off-shell string
field theory techniques , extended to higher ghost cohomologies (D.P., in prepara-
tion)
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5. Conclusions and outlook

•

RNS superstring theory in is invariant under infinite-dimensional algebra of
global symmetries, identified with higher spin algebra in AdSD. This is despite
the fact that the original theory is defined in Minkowski space. This is the first
known physical realization of unbroken higher spin symmetries (D.P. Phys. Rev.
D. 89, 026010 (2014); also to appear)

•

The higher spin algebra is realized as a vertex operator algebra in superstring
theory. The vertex operators describe emissions of frame-like higher spin gauge
fields in AdS space by a string

•

The Weyl invariance conditions on the vertex operators, defining the leading
order contribution to the conformal β-function, lead to the appearance of the
cosmological constant in the gravity part and to the Fronsdal’s EOM for the higher
spins in AdS. The β-function calculations reveal the emergent AdS geometry.

•
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The structure constants of higher spin algebra in AdS are identified with the
three-point correlation functions < Vs1Vs2Vs3 > in 2D CFT of RNS string theory.
These correlation functions are tedious but straightforward to compute. Given the
BRST constraints on VS, these correlators reproduce higher-spin interactions by
constructions.

•

In AdS4, the structure constants of HS algebra, computed this way, reproduce
the holographic cubic couplings of O(N) vector model in d = 3. In AdS5, the
structure constants particularly reproduce the gradient expansion in holographic
hydrodynamics in d = 4

•

The appearance of the ghost cohomologies Hs which OPE fusion is identical to
HS algebra structure, as well as the emergence of the AdS space is an important
hint towards background-independence of the larger string theory. One can hope to
find new symmetries and vertex operators corresponding to emergent backgrounds
other than AdS and to formulate consistent HS theories in these geometries as
well

•
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The off-shell string field theory extended to nonzero ghost cohomology is the
crucial object to explore in this direction. The key ingredient is the analytic
solutions of SFT e.o.m.: Qψ − ψ ⋆ ψ in higher ghost cohomologies

•

The solutions relevant to emergent AdS backgrounds are generally of the form
(D.P., to appear):

Ψ ∼
∑

N,n

λnNce
−NφB(n)(σ, χ, φ)

where B are the Bell polynomials (so far, better known in cryptography rather
than in CFT) and λ are coefficients given by recurrence relations, similar to Hardy-
Ramanujan formula for partitions

•

Different types of analytic SFT solutions may hold the key to strings and higher
spin gauge fields in various geometries, leading to new types of holographic relations
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