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Talk dedicated to the memory of
Sergio del Campo, chilean cosmologist

Who passed away a month ago, and with whom |
worked. He started theoretical cosmology in Chile.

Subject of this talk:

Here we will see how a unified picture of inflation
and present dark energy can be consistent with a
smooth, non singular origin of the universe,
represented by the emergent scenario, presenting
an attractive cosmological scenario. This is achieved
by considering two non Riemannian measures or
volume forms in the action. The motivation is:



— The early inflation, although solving many cosmological puzzles, like the hori-
zon and Hatness problems, cannot address the initial singularity problem;

— There is no explanation for the existence of two periods of exponential expan-
sion with such wildly different scales — the inflationary phase and the present
phase of slowly accelerated expansion of the universe.

The best known mechanism for generating a period of accelerated expansion
1= through the presence of some vacuum energy. In the context of a scalar held
theory, vacuum energy density appears naturally when the scalar field acquires an
effective potential Uy which has flat regions so that the scalar field can “slowly

roll”

and its kinetic energy can be neglected resulting in an energy-momentum
tensor Tur ™ guerU.g
we will E.t:ud‘;f a unified scenario where both an inflation

and a slowly accelerated phase for the universe can appear naturally from the

existence ol two Hat regions in the elfective scalar hield potential which we derive
systematically from a Lagrangian action principle. Namely, we start with a new
kind of globally Weyl-scale invariant gravity-matter action within the hrst-order
(Palatini) approach formulated in terms of two different non-Riemannian volume

forms (integration measures)
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— @(A) and $2( B) are two independent non-Riemannian volume-forms, i.e., gen-

erally covariant integration measure densities on the underlying space-time
manifold:

1 - 1 A
By (A) = " Ay P2(B) = 5By (2)

defined in terms of field-strengths of two auxiliary 3-index antisymmetric tensor
gauge helds. ¢ 2 take over the role of the standard Riemannian integration
measure density /—g = 1/ — det ||gur|| in terms of the space-time metric gup.

— R = ¢" Ry (I") and R (") are the scalar curvature and the Ricci tensor in
the first-order (Palatini) formalism, where the affine connection I'Y, is a priori
independent of the metric guw.. Note that in the second action term we have
added a R gravity term (again in the Palatini form). Let us recall that R+ R*
gravity within the second order formalism (which was also the first inflationary
model)

— L1+ denote two different Lagrangians of a single scalar matter field



Alternative realization of a non
Riemannian measure, from a mapping
of two spaces:

density can be built out of four auxiliary scalar fields " (i = 1.2, 3,4)

1 ... : .
fo R i 1 & N
(I:I |I e = _I " - — -!-;| J_:ilij i - ijll'. P é]r-: P E:II'II - .

d{ ) 15 a scalar density under general coordinate transformations.



ldeas from where can we get 4
scalars, for example from Cederwall’s

Doubling of space time, by adding the twiddle
coordinates which are scalars w/r to the

“normal space” and then define a “brane “
where the twiddle coordinates are a functions of
un-twiddle coordinates and Jacobian from the
mapping defines measure of integration?,

define XM to denote coordinates and dual coordinates

i T;
XM — ]
T !



LW = 20" gt —V(g) . V(g)=fiexp(—ag},  (3)
L = 2w 0n,0+Ue) . Ulp) = hexp{-2a), (1)

where o, f1, fo are dimensionful positive parameter, whereas b is a dimensionless
one.

— ¢ H) indicates the dual field strength of a third auxiliary 3-index antisymmet-
ric tensor gauge feld:

1 A -
&(H) = EL-—”” A H s (5)
whose presence is crucial for non-triviality of the model.

The scalar potentials have been chosen in such a way that the original action
(1} is invariant under global Weyl-scale transformations:

|
Bur — Ay gz:-—r;p+alnl,

The equations of motion resulting from the action (1) are as follows. Variation
of (1) w.r.t. affine connection I'f' :

ffrﬁg“”[ir ? } (VoI — Vol ) =0 (7)



_ 1_ _ _ _
r!-.f-:}l — r!-f;".}l {H} — ig’jm {H:-"r_-l'_l,,r; T a_].,g:-".li. - E.H-El':.-'_}.} 8 {E'}
w.r.t. to the Weyl-rescaled metric g,,:

Gur = (X1 + 2exaR)gw . x1 = ¢:"Ei§] . X2 = dij,{_;? : (9)

Variation of the action (1) w.r.t. auxiliary tensor gauge fields Ay, Bypes and
Hyp s yields the equations:

A

R+Lf13']=n , B#[Li2}+fﬂg+% -0, ap(‘ﬁﬂﬂj}zn, (10)

whose solutions read:
$a( B)

v —
(11)

Here A1 and M2 are arbitrary dimensionful and y2 arbitrary dimenionless in-
tegration constants. The appearance of My, My signifies dynamicel spontaneous
breakdouwn of global Weyl-scale invariance under (6) due to the scale non-invariant
solutions (second and third ones) in (11).
Varying (1) w.r.t. gur and using relations (11) we have:
|

|

B(H)
N=r]

= y2 = const |, R-I—L“:' = —M1 = const | Lm:'+fﬁ'.2+
v —a

where xy and yo are defined in (9), and T}EL‘E:' are the energy-momentum tensors
of the scalar field Lagrangians with the standard definitions:

— — M2 = const



of the scalar field Lagrangians with the standard definitions:

(1,2) _ (1.2) _o5_9 ;01.2)
Thiv gur L 25 =L (13)

Taking the trace of Eqs.(12) and using again second relation (11) we solve for
the scale factor vq:

T2 14 + Mo (14)
LU T2 —pfy

x1 = 2x2

where 712} — g"‘”T}E:,'E}.
Using second relation (11) Eqs.(12) can be put in the Einstein-like form:

1 1 (1) 1 ri} (1)
7i2) (1) JERY. ] -
EI ﬂ i 'I'Ef-w 'lfg+-£{L + Mji) ) : (15)
where: v
1 (1) y
2=1-= 2¢ (L) + my ) (16)

Let us note that (9), upon taking into account second relation (11) and (16), can
be written as:

Jur = X112 gpr . (17)



Now, we can bring Eqgs.(15) into the standard form of Einstein equations for
the rescaled metric gy, (17), ie. the Einstein-frame equations:

_ 1_ _ 1 =i
Ry (g) — oYL Rig) = 5w (18)

with energy-momentum tensor corresponding (according to (13)) to the following
effective (Einstein-frame) scalar field Lagrangian:

1 (1} X2 [y (1) ]
L — L Ay L M L M . 19
it = mﬂ{ + My + 25 LS 4 My + (LD 4 My) } (19)

In order to explicitly write L.g in terms of the Einstein-frame metric gue (17)
we use the short-hand notation for the scalar kinetic term:

X = —%gﬂ”amaapp (20)

and represent L'"? in the form:
LW =y 2x-v , L% =2k ™™X+U, (21)

with V and U7 as in (3)-(4).
From Fqgs.(14) and (16), taking into account (21), we find:
" M — g
L _ (V- M) [1 —IQ(L —EE)I] . (22)
X129y (U + My + e(V — My }ﬂ] V- M

Upon substituting expression (22) into (19) we arrive at the explicit form for the
Einstein-frame scalar Lagrangian:

Lot = A(@)X + B(¢)X* — Usa () (23)



where:

A = l —g . £ N ] 1:- . ﬂ'f‘
Alp) =1+ [Eﬁe «V-M)grn T e[V — M;)2
1, _qw . fie ¥ — My
—1 [—a ap _ % _ A ] _ _ . (24
+ 2 i £ (II'E 1) JIFEE—E'E;,'._'.I + Jﬂ-IE _|_ E{fie—ﬂn,f-' . J'I-.f'l ::IE d [: }
and
" [L" + Ma +(V — ,mjﬁe—ﬂ'*f’] _ 1p2e—2ay
Ble) =x2 U+ Mg + €[V — Mp)2
| fae=22% + My + (fre—2% — Mljﬁe—ﬂﬂ — 1p2e—2av
f— Er.
X2 fge—ﬂr_-..,: + Ma + e fie— 2% — ;"l'h]lg [ wJ}
whereas the effective scalar field potential reads:
- 2
_ (V — My)? (f1e7™¥ — M)
Uest(ig) = ) = |
dx2 [U L Mot e(V — ,'m}i‘] A2 [IEE_E'E"':' + Ma + e fre—2% — M; }ﬂ]
(26)

where the explicit form of V' and U7 (3)-(4) are inserted.

Let us recall that the dimensionless integration constant yo is the ratio of the
original second non-Riemannian integration measure to the standard Riemannian
one (9).



Shape of the effective scalar potential Upg () (26) for My < 0.
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Interesting feature of the effective
potential in the case no R"2 terms

are introduced, which is that the bump showed in the
picture raises above the first flat region (relevant for the
early universe) as much as the

second flat region (relevant for the present universe) is
above zero! . There is a hint of the present universe
which appears in the early universe.

For the other sign, we get a shape similar to that of the
Starobinsky model, which provides a good description of
inflation, but now, the new thing is the additional flat
region that can take care of the present dark energy!, see:



Shape of the effective scalar potential Ueg () (26) for My = 0.

15k




3 Flat Regions of the Effective Scalar Potential

Depending on the sign of the integration constant My we obtain two tyvpes of
shapes for the effective scalar potentail U.g(y) (26) depicted on Fig.1. and Fig.2.

The crucial feature of U g(y) is the presence of two very large Hat regions — for
negative and positive values of the scalar field . For large negative values of ¢ we
have for the effective potential and the coeflicient functions in the Einstein-frame

scalar Lagrangian (23)-(26):

: o fi/fa
Verl#) = Vo) = mati +erprmmy * 7

L+ 5bf1/1 b/4f2 — (1 +bf1/fa) g

Alp) ~ A, = ., Bly)~B_,=—
In the second flat region for large positive :
_ . M7 [Ma
Uemp{io) ~ U = ) 29
w() = Ui Ixa(l + eMZ/Mg) (29)
Alp) ~ A = s Ble)~ B = . 30
(1) {+ Ma + E“.:flﬂ : () (+) = €X2 M+ F_J"L-ff-' (30)



From the expression for U.g(w) (26) and the figures 1 and 2 we see that now
we have an explicit realization of quintessential inflation scenario. The flat re-
gions (27)-(28) and (29)-(30) correspond to the evolution of the early and the
late universe, respectively, provided we choose the ratio of the coupling constants
in the original scalar potentials versus the ratio of the scale-symmetry breaking
integration constants to obey:

L+eff/fa ™ 1+eMZ/My’

which makes the vacuum energy density of the early universe U;_, much bigger
than that of the late universe U, (cf. (27), (29})). The inequality (31) is equivalent
to the requirements:
i M M{
B2 0 9,

In particular, if we choose the scales of the scale symmetry breaking integration
constants M1 ~ J'l{";;w and M2 ~ J'H’}i;..;, where Mgpw, Mp; are the electroweak and
Plank scales, respectively, we are then naturally led to a very small vacuum energy
density Uiy ~ M{ /M2 of the order Mgy, /Mpy ~ 107120018, which is the right
order of magnitude for the present epoche’s vacuum energy density as already
recognized in RHef.[27]. On the other hand, if we take the order of magnitude of the
coupling constants in the effective potential fi ~ fa ~ (107 2M )%, then together
with the above choice of order of magnitudes for Mj 2 the inequalities (32) will be
satisfied as well and the order of magnitude of the vacuum energy density of the
early universe U;_, (27) becomes U;_y ~ i/ fa ~ 1078 ML, which conforms to the

BICEP2 data [5] implying the energy scale of inflation of order 10-*Mp,.

< 1. (32)



Before proceeding to the derivation of the non-singular “emergent universe”
solution describing an initial phase of the universe evolution preceeding the in-
flationary phase, let us briefly sketch how the present non-Riemannian-measure-
modified gravity-matter theory meets the conditions for the validity of the “slow-
roll” approximation [6] when ¢ evolves on the flat region of the effective potential
corresponding to the early universe [(27)-(28).

To this end let us recall the standard Friedman-Lemaitre- Robertson-Walker
space-time metric [26]:

2
ds? = —di® + a2(t) [% +r2(d6? + sin® 04?)| (33)
— Kr
and the associated Friedman equations (recall the presently used units Gyowion =
1/167):

a 1 K 1

i_ 1. ., m2e K _1, pg=9 34
describing the universe’ evolution. Here:
1 -2 3 . 4 _
p=54lp) ¥ +7Bp) ¥ +Uea(yp) . (35)
1 a1 4
p=3A(¢) ¢ +1B(¢) ¥ ~Usar(p) (36)

are the energy density and pressure of the scalar field ¢ = ©(t). Henceforth the
dots indicate derivatives with respect to the time t.



Let us now consider the standard “slow-roll” parameters [7]:

P
Hy

(37)

where = measures the ratio of the scalar field kinetic energy relative to its total
energy density and i measures the ratio of the fields acceleration relative to the
“friction” {~ 3H ) term in the pertinent scalar field equations of motion:

. .2 ! . 3 ’ 1 .2 3 ;.4
F(A+3BY )+3H 9 (A+BY¥ ]|+U,.;—§A ¥ +7B ¥ =0, (38)
with primes indicating derivatives w.r.t. .

L. - .. .2 .8 .4
In the slow-roll approximation one ignores the terms with &, ¢ | ¢ | ¥ so that
the g-equation of motion (38) and the second Friedman Eq.(34) reduce to:

JAH ¢ +Ug =0 HE:% T - (39)

Now, using the fact that ¢ evolves on a flat region of Uz we deduce that H =a
Ja =~ const, so that a(t) grows exponentially with time and, thus, in the second
Eq.(39) the spatial curvature term K/a” is ignored. Consistency of the slow-roll
approximation implies for the slow-roll parameters (37), taking into account (39),
the following inequalities:

2 Ul
A U.g

1 U2 2 UL 24’
—(i] 1 , gt -e- vE — <1. (40)

ST A\Ug Uit 43/2



Since now ¢ evolves on the flat region of U.g for large negative values (27),
the Lagrangian coefficient function A(yg) ~ A;_, as in (28) and the gradient of the
effective scalar potential is:

Vel = a1 T ef2 Fa) ()

which yields for the slow-roll parameter = (40):

da” M7e™¥

- fi(1+bf1/2f2)(1+ efi/fa)

%, 1 for large negative o . (42)

Similarly, for the second slow-roll parameter we have:

2 Ugg 40 M1 e™¥

l.d_ Ut | = Pl bf1/202) % 1 for large negative o . (43)




The value of ¢ at the end of the slow-roll regime 0.4 15 determined from the
condition £ ~ 1 which through (42) vields:

2a02
_ﬂﬂ'ﬁ-nn.-:l. . ‘]ﬂ Jﬂ-.f'l

T iU+ bf1/2f2) (1 4 €f7 [ f2)

¢ (44)

The amount of inflation when ¢ evolves from some initial value ;, to the end-point
of slow-roll inflation .,4 is determined through the expression for the e-foldings

N

Pand Pand H Pemd EHﬂA W umd Al it
N = Hdt:f fdlpg—f : f:;,gn_x—f s (45)
Fin in F Vir Lreﬂ Fin ELreﬁ'

where Eqs.(39) are used. Substituting (27), (28) and (41) into (45) yields an ex-
pression for N which together with (44) allows for the determination of ;-

Nl +bha/fa) f —ae. ooy
N o o (e Pin _ g0 } (46)



4 Non-Singular Emergent Universe Solution

We will now show that under appropriate restrictions on the parameters there
exist an epoch preceeding the inflationary phase. Namely, we derive an explicit
cosmological solution of the Einstein-frame system with effective scalar field La-
grangian (23)-(26) describing a non-singular “emergent universe” [15] when the
scalar field evolves on the first flat region for large negative ¢ (27). For previous
studies of “emergent universe” scenarios within the context of the less general
modified-measure gravity-matter theories with one non-Riemannian and one stan-
dard Riemannian integration measures, see Hef.[21].
Emergent universe is defined through the standard Friedman-Lemaitre- Robertso

Walker space-time metric (33) as a solution of (34) subject to the condition on the
Hubble parameter H:

H=0 — alt)=ag=const, p+3p=0

H

= %p (= const) ,  (47)

Sd =

with p and p as in (35)-(36):
The emergent universe condition (47) implies that the g-velocity p=p is time-
independent and satisfies the bi-quadratic algebraic equation:
3

-4 -2
iEf_:l “n +E."1|:_] ¥ —EU{_] =2 {45}

(with notations as in (27)-(28)), whose =solution read:

2

-2
A 2
bo= g5 |40 F /AL, +3B U |- (49)




To analyze stability of the present emergent universe solution:

s Gk 1 .2 3 .4
aj = o fo = ﬁﬂ"!{—j o +1-E['_:| o +U_y . (50)

. 2
with ¥p as in (49), we perturb Friedman Eqs.(34) and the expressions for p, p
(35)-(36) w.r.t. a(t) = ao + da(t) and ¥ (t) =¥o +4 ¥ (t), but keep the effective
potential on the flat region U.g = Uj_y:

da 1 2on .
Ly —(dp+3p) . o= —-F5a(51
M+12{P+ r) o - a(51)

! .8y _ - 2 _ . -8 :
|5I|5| = (."1.[_} ey +3.E{_:| 'FI:I) o — —ﬁ:ﬂlﬁﬂ. , op= [:"'1['—] w0 +E|:_} "P{I) d {52}

From the first Eq.(52) expressing § ¥ as function of da and substituting into the
first Eq.(51) we get a harmonic oscillator type equation for da:

2 f
. L2 j:\/.d[_} 3B_,U,_,
daotwba=0 , w = zP0 .

A :FEJA?_} +3.E['_:|Lr['_:|

(563)

where:

1 .2 :
20 = i IFI:I [.."1.['_) + E\/A?_} 1 E-E['_:]Lr[_}_ . {54}



with ¢n from (49). Thus, for existence and stability of the emergent universe
solution we have to choose the upper signs in (49), (53) and we need the conditions:

AL +3BU >0 | Ay -2/A2 +3B U] >0, (55)

The latter yield the following constraint on the coupling parameters:

ma:{{—ﬂ, —8(1 4 3efi/fa) [1 - \/1 - +31£F”E}” < a% < -1, (56)
1

in particular, implying that & < 0. The latter means that both terms in the original
matter Lagrangian L'® (4) appearing multiplied by the second non-Riemannian
integration measure density @5 (2) must be taken with “wrong” signs in order
to have a consistent physical Einstein-frame theory (23)-(25) possessing a non-
singular emergent universe solution.

2
For € = 0, since the ratio % proportional to the height of the first Hat region of

the effective scalar potential, 1.e., the vacuum energy density in the early universe,
must be large (cf. (31)), we find that the lower end of the interval in (56) is very
close to the upper end, ie, by~ —1.



In the present paper we have constructed a new kind of gravity-matter theory de-
fined in terms of two different non-Riemannian volume-forms (generally covariant
integration measure densities) on the space-time manifold, where the Einstein-
Hilbert term R, its square R?, the kinetic and the potential terms in the pertinent
cosmological scalar field (a “dilaton™ ) couple to each of the non-Riemannian inte-
gration measures in a manifestly globally Weyl-scale invariant form. The principal
results are as follows:

— Dwnamical spontaneous symmetry breaking of the global Weyl-zcale invariance.

— In the physical Einstein frame we obtain an effective scalar field potential with
two flat regions — one corresponding to the early universe evolution and a second
one for the present slowly acelerating phase of the universe.

— The flat region of the effective scalar potential appropriate for describing the
early universe allows for the existence of a non-singular “emergent” type be-
ginning of the universe’ evolution. This “emergent” phase is followed by the
inflationary phase, which in turn is followed by a period, where the scalar
field drops from its high energy density state to the present slowly accelerating
phase of the universe,

The flatness of the effective scalar potential in the high energy density region
makes the slow rolling inflation regime possible.

The presence of the emergent universe’ phase preceeding the inflationary phase
has observable consequences for the low CMB multipoles as has been recently
shown in Ref.[29]. Therefore, a full analysis of the CMB results in the context of
the present model should involve not only the classical “slow-roll” formalism, but
alzo the “super-inflation” one, which describes the transition from the emergent
universe to the inflationarv phase.



Furthermore, it would be nice if we
could apply the dynamical systems

analysis explained by Professor Marek
Sydlowski concerning dynamical system to a
rigorous analysis of all the stages of the
cosmological scenario developed here:
emergent universe, transition from emergent
universe to inflation (period of super inflation),

slow roll regime, etc.



For references, 1. look at this paper
we just wrote

e arXiv: 1408.5344 astro.ph.CO (which appeared
only monday this week), with my colleagues
Alexander Kaganovich, Emil Nissimov and
Svetlana Pacheva, entitled

Emergent Cosmology, Inflation and Dark Energy from
Spontaneous Breaking of Scale Invariance



2. also look at a previous paper and
references in both papers
Unification of Inflation and Dark Energy from
Spontaneous Breaking of Scale Invariance

Eduardo Guendelman, Emil Nissimov, Svetlana
Pacheva, Jul 23, 2014

e-Print: arXiv:1407.6281 [hep-th]
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Applications of alternative measures,
next talk is about with point (iii)

o (1) Study of D) = 4-dimensional models of gravity and matter fields con-
taiming the new measure of integration (1), which appears to be promising
candidates for resolution of the dark energy and dark matter problems, the
fifth force problem, etc.

o (11) Study of a new type of string and brane models based on employing
of a modified world-sheet'world-volume integration measure. It allows
for the appearance of new types of objects and effects like, for example, a
spontaneously induced varable string tension.

o (111) Studying modified supergravity models. Here we will find some out-
standing new features: (a) the cosmological constant arises as an arbitrary
integration constant, totally unrelated to the onginal parameters of the ac-
tion, and (b) spontaneously breaking of local supersymmetry invariance.



The Supergravity modified measure

Action has the general form like the second
piece of the action, with the second measure
and the H field.......... wait for Emil’s talk



