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Background

Duality symmetries in string theory/M-theory mix gravitational

and non-gravitational fields. Manifestation of such symmetries

calls for a generalisation of the concept of geometry.

It has been proposed that the compactifying space (torus) is en-

larged to accommodate momenta (representing momenta and brane

charges) in modules of a duality group.

This leads to doubled geometry

in the context of T-duality [Hull et al.; Hitchin;...]

and exceptional geometry

in the context of U-duality. [Hull; Berman et al.; Coimbra et al.;...]



In the present talk, I will

• Describe the basics of extended geometry: fields, gauge transfor-

mations, &c.

• Discuss some global issues concerning generalised manifolds.

• Make precise how duality transformations become “geometric”,

and what remains for a full description.

• Point out some questions and directions.



Compactify from 11 to 11− n dimensions on Tn. As is well known, all fields

and charges fall into modules of En(n).
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and charges fall into modules of En(n).

n En(n) R1

3 SL(3)× SL(2) (3,2)

4 SL(5) 10

5 Spin(5, 5) 16

6 E6(6) 27

7 E7(7) 56

8 E8(8) 248

I will focus on diffeomorphisms, and how they generalise. The ordinary diffeo-

morphisms go together with gauge transformations for the 3-form and (dual)

6-form fields (and for high enough n also gauge transformations for dual grav-

ity) in an En(n) module R1. This is the “coordinate module”. The derivative

transforms in R1.
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uous) T-duality group O(d, d). The momenta are complemented

with string windings to form the 2d-dimensional module.



The situation for T-duality is simpler.

Compactification from 10 to 10 − d dimensions give the (contin-

uous) T-duality group O(d, d). The momenta are complemented

with string windings to form the 2d-dimensional module.

Note that the duality group is not to be seen as a global symmetry.

Discrete duality transformations in O(d, d;Z) or En(n)(Z) should

arise as symmetries in certain backgrounds, just as the mapping

class group SL(n;Z) arises as discrete isometries of a torus.

The rôle of the continuous versions of the duality groups should

be analogous to that of GL(n) in ordinary geometry (gravity).



Generalised diffeomorphisms

One has to decide how tensors transform.

The generic recipe is to mimic the Lie derivative for ordinary

diffeomorphisms:

LUV
m = Un∂nV

m − ∂nU
mV n

↑ ↑

transport term gl transformation



Generalised diffeomorphisms

One has to decide how tensors transform.

The generic recipe is to mimic the Lie derivative for ordinary

diffeomorphisms:

LUV
m = Un∂nV

m − ∂nU
mV n

↑ ↑

transport term gl transformation

In the case of U-duality, the role of GL is assumed by En(n) ×R,

and
LUV

M

= UN∂NV M + ZMN
PQ∂NUPV Q

↑ ↑

transport term en(n) ⊕ R transformation

where ZMN
PQ = −αnP

M
adjQ,

N
P + βnδ

M
Q δNP .



Generalised diffeomorphisms
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LUV
m = Un∂nV

m − ∂nU
mV n

↑ ↑

transport term gl transformation

In the case of U-duality, the role of GL is assumed by En(n) ×R,

and
LUV

M = LUV
M + Y MN

PQ∂NUPV Q

= UN∂NV M + ZMN
PQ∂NUPV Q

↑ ↑

transport term en(n) ⊕ R transformation

where ZMN
PQ = −αnP

M
adjQ,

N
P + βnδ

M
Q δNP = Y MN

PQ − δMP δNQ .



The transformations form an algebra for n ≤ 7:

[LU ,LV ]W
M = L[[U,V ]]W

M

where the “Courant bracket” is [[U, V ]]M = 1
2 (LUV

M − LV U
M ),

provided that the derivatives fulfill a “section condition”.

The section condition ensures that fields locally depend only on

an n-dimensional subspace of the coordinates, on which a GL(n)

subgroup acts. It reads Y MN
PQ∂M . . . ∂N = 0, or

(∂ ⊗ ∂)|
R2

= 0



(∂ ⊗ ∂)|
R2

= 0

n R1 R2

3 (3,2) (3,1)

4 10 5

5 16 10

6 27 27

7 56 133

8 248 1⊕ 3875



The interpretation of the section condition is that the momenta

locally are chosen so that they may span a linear subspace of

cotangent space with maximal dimension, such that any pair of

covectors p, p′ in the subspace fulfill (p⊗ p′)|
R2

= 0.



The interpretation of the section condition is that the momenta

locally are chosen so that they may span a linear subspace of

cotangent space with maximal dimension, such that any pair of

covectors p, p′ in the subspace fulfill (p⊗ p′)|
R2

= 0.

The corresponding statement in T-duality is ηMN∂M ⊗ ∂N = 0,

where η is the O(d, d)-invariant metric. The maximal linear sub-

space is a d-dimensional isotropic subspace, and it is determined

by a pure spinor Λ. Once a Λ is chosen, the section condition can

be written ΓMΛ∂M = 0.

An analogous linear construction can be performed in the excep-

tional setting.



Reducibility

The generalised diffeomorphisms do not satisfy a Jacobi identity. On general

grounds, it can be shown that the “Jacobiator” is proportional to (([[U, V ]],W ))+

cycl, where

((U, V )) = 1
2
(LUV + LV U).

It is important to show that the Jacobiator in some sense is trivial. It turns

out that L((U,V ))W = 0 (for n ≤ 7), and the interpretation is that it is a

gauge transformation with a parameter representing reducibility.

In doubled geometry, this reducibility is just the scalar reducibility of a gauge

transformation: δB2 = dλ1, with the reducibility δλ1 = dλ′

0.

In exceptional geometry, the reducibility turns out to be more complicated,

leading to an infinite (but well defined) reducibility, containing the modules

of tensor hierarchies, and providing a natural generalisation of forms (having

connection-free covariant derivatives).



Generalised geometry

I will skip the detailed description of the generalised gravity. It ef-

fectively provides the local dynamics of gravity and 3-form, which

are encoded by a vielbein EM
A in the coset (En(n)×R)/K(En(n)).

n En(n) K(En(n))

3 SL(3)× SL(2) SO(3)× SO(2)

4 SL(5) SO(5)

5 Spin(5, 5) (Spin(5)× Spin(5))/Z2

6 E6(6) USp(8)/Z2

7 E7(7) SU(8)/Z2



The T-duality case is described by a generalised metric or vielbein

in O(d, d)/(O(d)×O(d)), parametrised by the ordinary metric and

B-field.

With some differences from ordinary geometry, one can go through

the construction of connection, torsion, metric compatibility &c.,

and arrive at generalised Einstein’s equations encoding the equa-

tions of motion for all fields.

One may introduce (local) supersymmetry, although the concept

of superfields is completely unexplored.



Finite transformations and patching

Just like a manifold may be described by an atlas of coordinate

charts with transition functions on the overlaps, we want to patch

a generalised manifold by overlaps, that must be finite generalised
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Finite transformations and patching

Just like a manifold may be described by an atlas of coordinate

charts with transition functions on the overlaps, we want to patch

a generalised manifold by overlaps, that must be finite generalised

diffeomorphisms.

In ordinary geometry, the transition functions are matricesMM
N =

∂XN

∂X′M , and covectors obey

A′

M (X ′) = MM
NAN (X) .

Now we need M to be replaced by a group element F in En(n)×R

or O(d, d):

A′

M (X ′) = FM
N (M)AN (X) .



A′

M (X ′) = FM
N (M)AN (X) .

The matrix F is known explicitly for O(d, d).

[Hohm, Zwiebach; Berman, MC, Perry]

F (M) = 1
2

(

M(M−1)t + (M−1)tM
)

Only partial results exist for exceptional groups.

[MC, Park, in progress]

The O(d, d) result can be obtained from exponentiation of the

generalised Lie derivative.



The näıve composition rule does not hold, F (M)F (N) 6= F (MN),

i.e., the map F : GL(2d) → O(d, d) is not a group homomor-

phism.

Instead, a “twisted” version holds,

F (M)F (N) = F (MN)e∆ ,

where e∆ is a generalised diffeomorphism that leaves the coordi-

nated unchanged. The existence of such transformations is due to

the section condition, and has no counterpart in ordinary geome-

try.

Such a “non-translating” generalised coordinate transformation

only transforms the B-field, and not the metric (given an explicit

solution to the section condition).



The situation can be summarised as follows:

For any choice of M = ∂X
∂X′

there is an equivalence class of gen-

eralised diffeomorphisms, all given by F (M,∆) = F (M)e∆ for

some ∆, with F (M) as a canonical representative. The map from

GL(2n) to the equivalence class is a homomorphism.

This leads to a gerbe structure. Defining

H(M,N) = F (M)F (M−1N)F (N−1) ,

the product

Λ(M,N,P ) = H(M,N)H(N,P )H(P,M)

defines the non-trivial triple overlap (cocycle).



It is not surprising that a gerbe structure arises, given that ten-

sor gauge transformations are contained in the formalism. It is

however striking that the structure can be examined very con-

cretely, and that the abelian gerbe is embedded in the (non-

abelian) O(d, d).

We expect “slightly” non-abelian gerbes to arise in the U-duality

context, as soon as the 6-form dual to the 3-form becomes impor-

tant, i.e., for n ≥ 5. These (finite) transformations have yet to be

constructed.



Duality transformations

Back to the geometric origin of duality symmetries. To what ex-

tent can they be obtained as “generalised isometries”?

There is a severe restriction, that is a result of the section condi-

tion. The situation is analogous in the O(d, d) and En(n) cases, I

review the O(d, d) situation for simplicity.

The solution to the section condition, forcing all fields to depend

only on a subset of the coordinates, identified as “ordinary” space,

is not changed by generalised diffeomorphisms. Transformations in

O(d, d) preserving an isotropic subspace do not fill out the entire

O(d, d), but only GL(d)⋉ ∧2
d.

In a basis with X = (x, x̃), where x are the physical coordinates,

they take the form
[

m •
0 m−1

]



In a basis with X = (x, x̃), where x are the physical coordinates,

they take the form
[

m •
0 m−1

]

This means that a large part of O(d, d,Z) is excluded. Even the

simple T-duality transformation interchanging momenta and string

windings (or x and x̃) through “R ↔ 1
R
” cannot be obtained as a

generalised diffeomorphism.

This also means that such transformations are not available as

transition functions on overlaps, so that genuinely “non-geometric”

solutions can not be constructed.



How can the situation be saved? I have some partial answers.

It turns out that double diffeomorphisms can be formulated not

only using the algebraic invariant O(d, d) metric ηMN , but any

pseudo-Riemannian (split-signature) metric HMN (X):

LξVM = (LξV )M −HMPH
NQDQξ

PVN .

(Earlier: LξVM = (LξV )M − ηMP η
NQ∂Qξ

PVN .)

The potential curvature obstructions in the algebra “miraculously”

cancel when D is the covariant derivative containing the (ordi-

nary) torsion-free affine connection defined by the metric H.

(Some further flatness restrictions are imposed by the consistency

of the covariant section condition.)

[MC 2014]



The defining metric H is not dynamical.

Corresponding statements should be true for exceptional groups,

but there the structure in question is not a metric structure.

The point of such a “pre-geometric” formulation is that it becomes

clear that any isometry of H will be a global symmetry of the

model. For infinitesimal (continuous) isometries, the statement

[Lu,Lξ] = L[u,ξ] can be verified explicitly, and the analogous

statement is true for finite isometries, e.g. the discrete isometries

of a torus.

The situation is not completely satisfactory, but may present a

step towards a better understanding of the geometric origin of

dualities.

What is really needed is probably a formulation where the sec-

tion condition is obtained dynamically (where the pure spinor is

promoted to a non-dynamical field?).



Conclusions and questions

• Extended geometry unifies metric and tensor fields, and their respective gauge

symmetries, in a framework providing interesting generalisations of ordinary

geometry.

• Many questions remain to be examined, especially concerning finite transfor-

mations and the construction of “generalised manifolds”. Most pressing is the

issue of the section condition. Although it is covariant, its solutions explicitly

break the continuous duality groups. It should preferably be promoted to a

dynamically generated constraint.

• A superspace formulation seems realistic for T-duality, but more problem-

atic for U-duality. Simultaneous manifestation of supersymmetry and duality

through some generalisation of pure spinor superfields may prove very pow-

erful.

• Partial results exist on exceptional diffeomorphisms for n > 7. This is where

dual gravity becomes important. This deserves further investigation.

...


