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We wish to understand the AdS/CFT
correspondence away from the maximally
supersymmetric case (AdSs x S°), but in
situations where dual theories can still be
under control (N = 1)

Plan:

Discuss the relevant supergravity backgrounds

Elaborate on certain geometric aspects
of the problem (new resolution parameters)
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Supergravity backgrounds
and interpretation
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We start with type IIB theory defined on

R*! % V', where Y is a Calabi-Yau threefold
We place D3-branes with worldvolume R at
an isolated singular point of Y

We will consider singularities that have the
form of complex cone over a surface X

We will assume that X is toric (hence Y is
toric), which means that Y has at least a

7 (1)* worth of isometries
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Within supergravity these branes lead
to solutions of the form

3 -~
ds? = h"Y%(y) 3 dz,dz, + h'?(y) (ds?)y
pn=0

where h(vy) depends only on the coordinates
on Y and satisfies Poisson’s equation:

These are generalizations of the solution of
Horowitz, Strominger [1991] (fOI‘ Y = Cg), which
leads in the ‘near-horizon’ limit to the familiar
AdSs5 x S® geometry
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The simplest case is when branes are placed
exactly at the singular point

NS (ds2), = dr? + r2ds?x RGP Gk
a Sasaki-Einstein 5-manifold (defined below)

There is also a 5-form flux through X:
{ Fs~N
X

The function h is found explicitly:
, and the SUGRA ansatz above

leads to a smooth geometry of the form
AdS5 x X° Morrison, Plesser [1998]
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For generic X such solutions preserve N = 1
SUSY, since X admits one Killing spinor:

There are two types of deformations of the
above construction:

One can move the branes off the cone tip
One can ‘resolve’ the singularity at the tip
Both of these are related to symmetry
breaking in the N = 1 superconformal field
theory Klebanov, Witten [1998]
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The conifold: B2 =A% in C*

Formal solution:

X = albl, Y = azbz, U = a1b2, V = a2b1
= Conifold = cone over CP! x CP*
Dual QFT with gauge group
SU(N) x SU(N), two sets of chiral fields:
Ay and B,,,, doublets under A,

global SU (2) x SU(2)
SU(N)QSU(N)

Klebanov, Witten [1998] Bu
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Klebanov, Witten [1998]

The configuration [A., B,,| = 0 satisfies the
zero-energy condition; diagonalize A, and B,,,

If the eigenvalues satisfy a. # 0, b,,, # 0, then
(tr(A.B,,)) can be regarded as positions of
the branes moved off the tip of the conifold

If A. =0, then (det B;) may be thought of
as positions on the CP' x CP' glued in at
the origin of the resolved cone (hence
proportional to the blow-up parameters)
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The conifold theory. III.

The brane

The blow-up
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The metric on the resolved conifold (i.e. on
Y') was built in Candelas, de la Ossa [1990] and
generalized in Pando Zayas, Tseytlin [2001]

A background that interpolates between

N =1 conifold theory (UV) and N = 4
theory after symmetry breaking (IR) (i.e. the
h-function for the brane solution) was
constructed in Klebanov, Murugan [2007]

Steklov Mathematical Institute, Moscow € Max-Planck-Institut fiir Gravitationsphysik (AEI), Potsdam-Gc

Branes at toric conical singularities



Geometry of the transverse space Y
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X is Sasaki-Einstein iff the cone over it is
Kéahler and Ricci-flat:

(ds?)y = dr? + 72 (ds?)
(ds?)y Kahler & Ricci-flat <
(ds?) x Sasaki—Einstein, of positive curvature

where (dsz) v 1s Kéhler-Einstein (but not
necessarily smooth), .J is the Kéhler current

r = 0 — singularity
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It is possible to resolve the singularity of the
conical metric by ‘blowing-up’ the vertex, i.e.
by replacing it with a cycle of non-zero size
The metric at infinity, i.e. at r — oo, will still
be asymptotic to the cone:

(ds?)y = dr? + r?(ds?)y for 1 —
Apart from simplest cases, resolved metrics on
the cones are not known = Our study
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Eguchi, Hanson, 1978
Complex dimension 2, singularity of the form

C?*/Zy: (z1,22) ~ (—21,—22)
Introducing invariant coordinates
X =22Y = 22,7 = zy29, we get an
equation
This corresponds to the cone in the

embedding of CP' by the linear system
|O(2)], i.e. the anticanonical embedding
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One can look for the Kahler potential of the
form K = K(|z1|* + |22]°).

The metric is, as usual, ds?> = 8;0, K dz'dz’
For a Kahler metric the Ricci tensor can be
expressed as Pitees —0;0jlogdet g

Set R,; = 0, solve for the Kéhler potential:

The Eguchi-Hanson metric

= V1?2 + 42? + r log (V) p > 0
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2d case: Eguchi-Hanson—anticanonical cone over
CPl = SE X3 = Sg/Zz

‘3d Eguchi-Hanson’= anticanonical cone over
CP2 = SE X5 = S5/Z3

3d case: Candelas-de la Ossa [1990] = anticanonical
cone over CP' x CP"' (resolved conifold)

. 1,1 _ SU(2)xSU(2)
= SE X5 =T = T
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One can only build Ricci-flat cones over
complex manifolds of ‘positive curvature’ (i.e.
with ample anticanonical class)

For the cone to be of dimc = 3, we take the
underlying base to be of dim¢ = 2

Apart from CP? and CP' x CP', there are
only 8 other positively curved complex
surfaces — the del Pezzo surfaces

dP,, ..., dPsg
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e
dP,

dP,, can be seen as CP?, blown-up in n
sufficiently generic points

We will consider the simplest
non-homogeneous case, i.e. the cone over dP;

Any metric on dP; should have at least two
parameters — the sizes of CP? and of the
blown-up CP*

Do these parameters persist
in the cone over dP?
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Whereas the automorphism group of CP? is
PGL(3,C), the automorphism group of the
del Pezzo surface is reduced to

Aut(dPy) = P (1)

e o o
e o o
e O O

The isometry group of the metric on the cone
is the maximal compact subgroup of the
parabolic subgroup shown above, i.e.

Isom = U(1) x U(2)
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We will looszor a Iziéhler pzotential of the form
K = K(|u|", |z1]" + |z2]") := K(e", €*)
Just as in the case of the Eguchi-Hanson

metric, we can write out a Ricci-flatness
equation

More convenient to perform a Legendre

transform w.r.t. ¢, s, introducing the dual
momentum maps (= %—It{, v = 6—K and a

dual potential G = tu + sv — K
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The equation

eGutGy (GH“G,,,, — wa) =

The domain — the moment polygon

o(1)
¢

O(1)@0(-3) |

OC-1)@0(-1)-
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Q0

We can solve the equation exactly at large
[, v with fixed ‘angle’ £ = ©, assuming the
conical form of the metric

INTENATEN G = 3v(logy — 1) + v Py(€)
Py(€) satisfies an ODE and can be found
exactly. It provides a Sasaki-Einstein metric,
which in the dP; case is the Y %' manifold
(Y'P9 manifolds were constructed in

Gauntlett, Martelli, Sparks, Waldram [2004])
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Mth

We can build a systematic perturbation theory

00
G = 3v(logv—1)+v Py(¢) +logr+ Yv=" Puy1(8)
k=0

M

In order " we obtain the equation

4 (Q(g)d%> _ ((M _2)?_ 1) £ Py = r.hs.,

where Q&) =¢*-3¢2+d

This is a Heun equation — an analogue of
hypergeometric equation with 4 Fuchsian
singularities on CP*!
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All resolution parameters should arise as
coefficients in front of the solutions to the
homogeneous equation in some order of
perturbation theory

The equation is solved in a ‘physical’ interval

€ € [&1,8] Q®

/\ Ne &
N\ /
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Regularity of the metric at the boundaries of
the moment polytope requires that the
solutions should be regular at & = &, &,

= Eigenvalue problem

Solutions exist for M = 3, 4:
P3=a, P4=,6(€—1)
Conjecture:

For other M solutions do not exist
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When 3 = —2%0, the exact metric is known
Calderbank, Gauduchon [2006], Chen, Lu, Pope [2006]

In general, topology imposes one more
relation between 3 and « Martelli, Sparks [2007]

Hence the general situation is as follows:

B

Exact metric




Can one obtain an exact formula with both
parameters o, 37

As just discussed there is an exact formula
when 3 = 25 Is there a generalization?

Dual field theories for AdSs x X° have been
conjectured Feng, Hanany, He, 2000

What is the symmetry breaking pattern
corresponding to the new parameter
in the metric?
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Thank youl
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