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Motivation

 We wish to understand the AdS{CFT

correspondence away from the maximally
supersymmetric case (AdS5 ��� S5), but in
situations where dual theories can still be
under control (N ��� 1)

Plan:

 Discuss the relevant supergravity backgrounds

 Elaborate on certain geometric aspects

of the problem (new resolution parameters)
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Supergravity backgrounds
and interpretation
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Supergravity solutions. I.

 We start with type IIB theory defined on
R3,1 ��� Y , where Y is a Calabi-Yau threefold


 We place D3-branes with worldvolume R3,1 at
an isolated singular point of Y


 We will consider singularities that have the
form of complex cone over a surface X


 We will assume that X is toric (hence Y is
toric), which means that Y has at least a
Uppp1qqq3 worth of isometries
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Supergravity solutions. II.

 Within supergravity these branes lead

to solutions of the form

ds2 ��� h�1{2pppyqqq
3°°°
µ�0

dxµdxµ ��� h1{2pppyqqq ppp�ds2qqqY
where hpppyqqq depends only on the coordinates
on Y and satisfies Poisson’s equation:
4h ��� °°° δpppsourcesqqq Kehagias [1998]


 These are generalizations of the solution of
Horowitz, Strominger [1991] (for Y ��� C3), which
leads in the ‘near-horizon’ limit to the familiar
AdS5 ��� S5 geometry
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Supergravity solutions. III.

 The simplest case is when branes are placed

exactly at the singular point


 Then ppp�ds2qqqY ��� dr2 ��� r2�ds2
X , where X is

a Sasaki-Einstein 5-manifold (defined below)

 There is also a 5-form flux through X:³³³
X

F5 ���N

 The function h is found explicitly:
h ���N ��� 1

r4
, and the SUGRA ansatz above

leads to a smooth geometry of the form
AdS5 ���X5 Morrison, Plesser [1998]
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AdS{CFT with N � 1 SUSY

 For generic X such solutions preserve N ��� 1

SUSY, since X admits one Killing spinor:
ppp∇µ ��� F5γµqqqψ ��� 0

There are two types of deformations of the
above construction:


 One can move the branes off the cone tip

 One can ‘resolve’ the singularity at the tip

 Both of these are related to symmetry

breaking in the N ��� 1 superconformal field
theory Klebanov, Witten [1998]
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The conifold theory. I.

 The conifold: X Y ��� U V in C4


 Formal solution:
X ��� a1b1, Y ��� a2b2, U ��� a1b2, V ��� a2b1

ñññ Conifold = cone over CP1 ���CP1


 Dual QFT with gauge group
SUpppN qqq ��� SUpppN qqq, two sets of chiral fields:
Ab and Bm, doublets under
global SUppp2qqq ��� SUppp2qqq

Klebanov, Witten [1998]

A

B

c

m

SU(N) SU(N)
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The conifold theory. II.
Klebanov, Witten [1998]


 The configuration rrrAc,Bmsss ��� 0 satisfies the
zero-energy condition; diagonalize Ac and Bm


 If the eigenvalues satisfy ac ��� 0, bm ��� 0, then
xtrpppAcBmqqqy can be regarded as positions of
the branes moved off the tip of the conifold


 If Ac ��� 0, then xdetBjy may be thought of
as positions on the CP1 ���CP1 glued in at
the origin of the resolved cone (hence
proportional to the blow-up parameters)
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The conifold theory. III.

Y

The	brane The	blow-up
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The conifold theory. IV.


 The metric on the resolved conifold (i.e. on
Y ) was built in Candelas, de la Ossa [1990] and
generalized in Pando Zayas, Tseytlin [2001]


 A background that interpolates between
N ��� 1 conifold theory (UV) and N ��� 4
theory after symmetry breaking (IR) (i.e. the
h-function for the brane solution) was
constructed in Klebanov, Murugan [2007]
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Geometry of the transverse space Y
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Sasaki-Einstein manifolds

 X is Sasaki-Einstein iff the cone over it is

Kähler and Ricci-flat:
ppp�ds2qqqY ��� dr2 ��� r2 ppp�ds2qqqX


 ppp�ds2qqqY Kähler & Ricci-flat ôôô
ppp�ds2qqqX Sasaki-Einstein, of positive curvature


 The metric can be written as
pppds2qqqX5 ��� pppdφ��� Jqqq2 ��� pppds2qqqM
where pppds2qqqM is Kähler-Einstein (but not
necessarily smooth), J is the Kähler current


 r ��� 0 ÑÑÑ singularity
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Resolving the singularity of the cone


 It is possible to resolve the singularity of the
conical metric by ‘blowing-up’ the vertex, i.e.
by replacing it with a cycle of non-zero size


 The metric at infinity, i.e. at r ÑÑÑ 888, will still
be asymptotic to the cone:
ppp�ds2qqqY ��� dr2 ��� r2 ppp�ds2qqqX for r ÑÑÑ 888


 Apart from simplest cases, resolved metrics on
the cones are not known ñññ Our study
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Some examples

 Eguchi, Hanson, 1978

Complex dimension 2, singularity of the form
C2{{{Z2 : pppz1, z2qqq ��� ppp���z1,���z2qqq


 Introducing invariant coordinates
X ��� z2

1, Y ��� z2
2, Z ��� z1z2, we get an

equation XY ��� Z2 in C3


 This corresponds to the cone in the
embedding of CP1 by the linear system
|||Oppp2qqq|||, i.e. the anticanonical embedding
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The Eguchi-Hanson metric

 One can look for the Kähler potential of the

form K ���Kppp|||z1|||2 ��� |||z2|||2qqq.
The metric is, as usual, ds2 ��� BBBiB̄BBjKdzi dz̄j


 For a Kähler metric the Ricci tensor can be
expressed as Rij̄ ��� ���BBBiB̄BBj log det g


 Set Rij̄ ��� 0, solve for the Kähler potential:

The Eguchi-Hanson metric

K ���
?
r2 � 4x2 ��� r log p

?
r2�4x2�r

2x
q, r ¡¡¡ 0
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More examples


 2d case: Eguchi-Hanson=anticanonical cone over
CP1 ñ SE X3 ��� S3{{{Z2


 ‘3d Eguchi-Hanson’= anticanonical cone over
CP2 ñ SE X5 ��� S5{{{Z3


 3d case: Candelas-de la Ossa [1990] = anticanonical
cone over CP1 ���CP1 (resolved conifold)
ñ SE X5 :��� T 1,1 ��� SUp2q�SUp2q

Up1q
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Other cones?

 One can only build Ricci-flat cones over

complex manifolds of ‘positive curvature’ (i.e.
with ample anticanonical class)


 For the cone to be of dimC ��� 3, we take the
underlying base to be of dimC ��� 2


 Apart from CP2 and CP1 ���CP1, there are
only 8 other positively curved complex
surfaces – the del Pezzo surfaces

dP1, . . . , dP8
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The del Pezzo surface dP1


 dPn can be seen as CP2, blown-up in n
sufficiently generic points


 We will consider the simplest
non-homogeneous case, i.e. the cone over dP1


 Any metric on dP1 should have at least two
parameters – the sizes of CP2 and of the
blown-up CP1


 Do these parameters persist
in the cone over dP1?
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Isometries

 Whereas the automorphism group of CP2 is
PGLppp3,Cqqq, the automorphism group of the
del Pezzo surface is reduced to

AutpdP1q � P

�
� 
 
 0

 
 0

 
 


�

 (1)


 The isometry group of the metric on the cone
is the maximal compact subgroup of the
parabolic subgroup shown above, i.e.
Isom ��� U ppp1qqq ���Uppp2qqq
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The main equation

 We will look for a Kähler potential of the form
K ���Kppp|||u|||2, |||z1|||2 ��� |||z2|||2qqq :���Kpppet, esqqq


 Just as in the case of the Eguchi-Hanson
metric, we can write out a Ricci-flatness
equation


 More convenient to perform a Legendre
transform w.r.t. t, s, introducing the dual
momentum maps µ ��� BK

Bt , ν ��� BK
Bs and a

dual potential G ��� tµ��� sν ���K
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The equation

eGµ�Gν
�
GµµGνν ���G2

µν

� ��� µ

 The domain – the moment polygon

ν

⊕O(1) O(-3)

⊕O(-1) O(-1)

μ

dP1

The	new	origin

O(1)

O(-1)

1

2

3
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The expansion at 888

 We can solve the equation exactly at large
µ, ν with fixed ‘angle’ ξ ��� µ

ν
, assuming the

conical form of the metric

 This gives G ��� 3νppplog ν ��� 1qqq ��� ν P0pppξqqq

 P0pppξqqq satisfies an ODE and can be found

exactly. It provides a Sasaki-Einstein metric,
which in the dP1 case is the Y 2,1 manifold
(Y p,q manifolds were constructed in
Gauntlett, Martelli, Sparks, Waldram [2004])
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M th order and the Heun equation

 We can build a systematic perturbation theory

G ��� 3νppplog ν���1qqq���ν P0pppξqqq���log ν���
888°°°
k�0

ν�k Pk�1pppξqqq


 In order ν�M we obtain the equation
d
dξ

�
QpppξqqqdPM

dξ

	
���
�
pppM ��� 2qqq2 ��� 1

	
ξ PM ��� r.h.s.,

where Qpppξqqq ��� ξ3 ��� 3
2
ξ2 ��� d


 This is a Heun equation – an analogue of
hypergeometric equation with 4 Fuchsian
singularities on CP1
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Resolution parameters

 All resolution parameters should arise as

coefficients in front of the solutions to the
homogeneous equation in some order of
perturbation theory


 The equation is solved in a ‘physical’ interval
ξ PPP rrrξ1, ξ2sss ξ

ξ

Q(  )

ξ
ξ ξ

0

1 2
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Resolution parameters. 2.


 Regularity of the metric at the boundaries of
the moment polytope requires that the
solutions should be regular at ξ ��� ξ1, ξ2

ñññ Eigenvalue problem

 Solutions exist for M ��� 3,4:
P3 ��� α, P4 ��� β pppξ ��� 1qqq


 Conjecture:
For other M solutions do not exist
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Resolution parameters. 3.

 When β ��� ��� α

2ξ0
, the exact metric is known

Calderbank, Gauduchon [2006], Chen, Lu, Pope [2006]


 In general, topology imposes one more
relation between β and α Martelli, Sparks [2007]


 Hence the general situation is as follows:

Exact	metric

Cone	over	dP1
β

α
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Questions / Answers

 Can one obtain an exact formula with both

parameters α,β?

 As just discussed, there is an exact formula

when β ��� ��� α
2ξ0

. Is there a generalization?


 Dual field theories for AdS5 ���X5 have been
conjectured Feng, Hanany, He, 2000


 What is the symmetry breaking pattern
corresponding to the new parameter
in the metric?
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Thank you!
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