Naturalness and string phenomenology in the LHC era

I. Antoniadis

8th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical Physics Belgrade, Serbia, 24-31 August 2014

- LHC: where do we stand? where do we go?
- Low energy SUSY after the Higgs discovery
- Non-linear SUSY and MSSM
- Non-linear SUSY and Starobinsky inflation
- Low scale strings and extra dimensions
- Gravity scale and number of species

Connect string theory to the real world

- Is it a tool for strong coupling dynamics or a theory of fundamental forces?
- Can string theory describe both particle physics and cosmology?
- What can we hope to learn from LHC and cosmological observations on string phenomenology?

H⁰ (Higgs Boson)

The observed signal is called a Higgs Boson in the following, although its detailed properties and in particular the role that the new particle plays in the context of electroweak symmetry breaking need to be further clarified. The signal was discovered in searches for a Standard Model (SM)-like Higgs. See the following section for mass limits obtained from those searches.

H⁰ MASS

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
125.9±0.4 OUR AVERAGE			
$125.8 \pm 0.4 \pm 0.4$	¹ CHATRCHYAN 13J	CMS	pp, 7 and 8 TeV
$126.0\pm0.4\pm0.4$	² AAD 12AI	ATLS	pp, 7 and 8 TeV
• • • We do not use the followi	ing data for averages, fits,	limits,	etc. • • •
$126.2 \pm 0.6 \pm 0.2$	³ CHATRCHYAN 13J	CMS	pp, 7 and 8 TeV
$125.3 \pm 0.4 \pm 0.5$	⁴ CHATRCHYAN 12N	CMS	pp, 7 and 8 TeV
HTTP://PDG.LBL.GOV	Page 1	Crea	ted: 7/31/2013

particle listing

MS-PAS-HIG-14-009

$$m_{\rm H} = 125.03 \pm 0.30 \begin{bmatrix} +0.26\\ -0.27 & (\text{stat.}) & -0.13 \\ -0.15 & (\text{syst.}) \end{bmatrix} \text{GeV}$$

Measurement of the Higgs boson mass (and signal strengths)

Main Decay and Production Modes

$$\sigma/\sigma_{\rm SM} = 1.00 \pm 0.13 \ \left| \pm 0.09 (\text{stat.})^{+0.08}_{-0.07} (\text{theo.}) \pm 0.07 (\text{syst.}) \right|$$

 Grouped by production tag and dominant decay: ⁺

$$\chi^2/dof = 10.5/16$$

- p-value = 0.84 (asymptotic)
- ttH-tagged 2.0σ above SM.
 - Driven by one channel.

a.david@cern.ch @CMSexperiment @ICHEP2014

The value of its mass $\sim 125~\text{GeV}$

- consistent with expectation from precision tests of the SM
- favors perturbative physics quartic coupling $\lambda = m_H^2/v^2 \simeq 1/8$
- 1st elementary scalar in nature signaling perhaps more to come
- triumph of QFT and renormalized perturbation theory!
 Standard Theory has been tested with radiative corrections

Window to new physics ?

- very important to measure precisely its properties and couplings
- several new and old questions wait for answers
 Dark matter, neutrino masses, baryon asymmetry, flavor physics, axions, electroweak scale hierarchy, early cosmology, ...

Beyond the Standard Theory of Particle Physics: driven by the mass hierarchy problem

Standard picture: low energy supersymmetry

Natural framework: Heterotic string (or high-scale M/F) theory

Advantages:

- natural elementary scalars
- gauge coupling unification
- LSP: natural dark matter candidate
- radiative EWSB

Problems:

- too many parameters: soft breaking terms
- MSSM : already a % ‰ fine-tuning 'little' hierarchy problem

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

	MSUGRA/CMSSM : 0 lep + j's + E T miss	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	t.50 TeV	
	MSUGRA/CMSSM : 1 lep + j's + E T.mins	L=5.8 fb ⁻¹ .8 TeV [ATLAS-CONF-2012-104]	1.24 TeV q = g mass	471.40
22	Pheno model : 0 lep + j's + E T.miss	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV g mass (m(q) < 2 TeV, light χ ⁰ ₁)	AILAS
che .	Pheno model : 0 lep + j's + E _{T.miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV q mass (m(g) < 2 TeV, light χ ²)	Preliminary
an	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{\pm}$) : 1 lep + j's + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	900 GeV \tilde{g} mass $(m(\tilde{\chi}_{1}^{2}) < 200 \text{ GeV}, m(\tilde{\chi}^{2}) = \frac{1}{2}(m)\tilde{\chi}^{2}$)+m(ĝ))
Se	GMSB (INLSP) : 2 lep (OS) + j's + E T mas	L#4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 TeV ĝ mass (tanβ < 15)	
NG.	GMSB ($\tilde{\tau}$ NLSP) : 1-2 τ + j's + E	L=20.7 fb ⁻¹ , 8 TeV [1210.1314]	1.40 TeV ĝ mass (tanβ > 18)	
nsi	GGM (bino NLSP) : $\gamma\gamma + E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.07 TeV g mass (m(2) > 50 GeV)	$dt = (4.4 - 20.7) \text{ fb}^{-1}$
30/	GGM (wino NLSP) : γ + lep + E	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144]	619 GeV ĝ mass	Lui - (4.4 - 20.7) ID
-	GGM (higgsino-bino NLSP) : $\gamma + b + E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	900 GeV g mass (m(x) > 220 GeV)	e = 7.8 TeV
	GGM (higgsino NLSP) : Z + jets + E T.miss	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152]	690 GeV g mass (m(H) > 200 GeV)	13-1,0164
	Gravitino LSP : 'monojet' + E T.miss	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	645 GeV F ^{**} Scale (m(G) > 10 ⁴ eV)	
0 u.	g→bbx : 0 lep + 3 b-j's + E _{T miss}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.24 TeV g mass (m(χ_3^0) < 200 GeV)	0.7-1/
ger	$\tilde{g} \rightarrow tt \tilde{\chi}^{\circ}$: 2 SS-lep + (0-3b-)j's + $E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	900 GeV g mass (any m(x,))	8 lev, all 2012 data
glt glt	ğ→tt [°] _χ : 0 lep + multi-j's + E _{T.miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103]	1.00 TeV g mass (m(x) < 300 GeV)	8 TeV, partial 2012 data
e ε	g→ttÿ, : 0 lep + 3 b-j's + E _{T min}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.15 TeV g mass (m(χ) < 200 GeV)	
	$\sum_{n \to \infty} bb, b_1 \to b\tilde{\chi}_1^n : 0 \text{ lep } + 2\text{-b-jets } + E_{T,miss}$	L=12.8 fb ⁻¹ .8 TeV [ATLAS-CONF-2012-165]	620 GeV b mass (m(z) < 120 GeV)	7 TeV, all 2011 data
hs on	bb, $b_1 \rightarrow t \tilde{\chi}_1^+$: 2 SS-lep + (0-3b-)j's + $E_{T,mas}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	430 GeV b mass $(m(\tilde{\chi}_1^*) = 2m(\tilde{\chi}_2^*))$	
cti ar	tt (light), $t \rightarrow b\chi^{+}$: 1/2 lep (+ b-jet) + E _{T.miss}	L=4.7 fb ⁻¹ , 7 TeV [1208.4305, 1209.2102]	167 GeV t mass $(m(\tilde{\chi})) = 55 \text{ GeV}$	
ndu Ndu	tt (medium), $t \rightarrow b\chi^{+}$: 1 lep + b-jet + E _{T.miss}	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-037]	160-410 GeV I mass $(m(\chi_1) = 0 \text{ GeV}, m(\chi_1) = 150 \text{ GeV})$	
Dro	tt (medium), $t \rightarrow b\chi_1^*$: 2 lep + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-167]	160-440 GeV I mass $(m(\bar{\chi}_1) = 0 \text{ GeV}, m(\bar{\chi}_1) = 10 \text{ GeV})$	
ct 3	tt (heavy), t→tχ : 1 lep + b-jet + E T.miss	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-037]	200-610 GeV I mass $(m(\tilde{\chi}_1) = 0)$	
life U	tt (heavy), t \rightarrow t χ^- : 0 lep + 6(2b-)jets + E _{T miss}	L+20.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-024]	320-660 GeV I Mass (m(X,) = 0)	
0.0	tt (natural GMSB) : 2(→II) + D-Jet + E	L+20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-025]	500 GeV [mass (m(X,) > 150 GeV)	
	$L_2L_2, L_2 \rightarrow L_1+Z : Z(\rightarrow II) + 1 Iep + b-jet + E_{T,mise}$	L=20.7 fb ⁻¹ , 8 TeV (ATLAS-CONF-2013-025)	520 GeV L_2 mass $(m(t_1) = m(\tilde{\chi}_1) + 180 \text{ GeV})$	
	$[I_{i}, I \rightarrow i\chi] : 2 \text{ lep } + E_{T, max}$	L#4.7 fb", 7 TeV [1208.2884]	85-195 GeV ITTALSS $(m(\chi_{i}) = 0)$	
≥ct	$\chi_{\chi_{1}}\chi_{2} \rightarrow W(W): 2 \text{ lep } + E_{T,miss}$	L=4.7 fb ', 7 TeV [1208.2884]	110-340 GeV χ IIIIdSS $(m(\chi) < 10 \text{ GeV}, m(\chi) = \frac{1}{2}(m(\chi) + m(\chi)))$	
ШŚ	$\tilde{x}^{\pm}\tilde{x}^{0} \rightarrow \tilde{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt$	2420.7 FB ; 8 TEV [ATDAS-CONF-2013-028]	$\frac{1}{2} \frac{1}{2} \frac{1}$	
	λ ₁ λ ₂ = τ ₁ τ ₂ ⁰ , (λ(*) ² 0 ⁻ 7(*) ² 0 , 2 log , Ε ⁻ , miss	L=20.7 fb , 8 TeV (ATLAS-CONF-2013-035)	$\frac{1}{2} \frac{1}{2} \frac{1}$	ve)
	$\chi_{\chi} \rightarrow W \chi_{\chi} \chi_{\chi}$ 3 lep $\pm E_{T max}$ Direct \bar{x}^{*} pair prod. (AMSR) : long-lived \bar{x}^{*}	L=20.7 fb ; 8 16V [ATLAS-CONF-2013-035]	200 GeV χ^2 mass $(m\chi_1) = m\chi_2, m\chi_1) = 0$, steptons decoupled)	
SS 60	Stable 3 P hadrone : low 8 By	1 = 4 7 fb ⁻¹ 7 TaV (1211 1507)	985 GeV (1 mass	
icle icle	GMSB stable $\tilde{\tau}$: low B	L =4.7 fb ⁻¹ 7 TaV [1211 1597]	300 GeV T MASS (5 stan6 s 20)	
art	GMSB, $\tilde{\chi}^0 \rightarrow \chi \tilde{G}$: non-pointing photons	L=4.7 fb ⁻¹ .7 TeV [ATLAS-CONF-2013-016]	230 GeV $\tilde{\chi}^{0}$ mass $(0.4 \le t(\tilde{\chi}^{0}) \le 2 \text{ ns})$	
7 6	$\tilde{\chi}^0 \rightarrow qqu (RPV)$; $\mu + heavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV Q MASS (1 mm < ct < 1 m, Q decoupled)	
	LFV : pp→v.+X, v.→e+µ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.61 TeV V mass (λ=0.10, λ=	0.05)
	LFV : $pp \rightarrow \tilde{v}, +X, \tilde{v}, \rightarrow e(\mu) + \tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.10 TeV V, mass (λ _m =0.10, λ _{mm} =0.05)	
	Bilinear RPV CMSSM : 1 lep + 7 j's + E T miss	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140]	1,2 TeV Q = Q mass (ct, m < 1 mm)	
J.	$\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}, \tilde{\chi}_{1}^{\dagger} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0} \rightarrow eev_{\mu}, e\mu v_{\mu}: 4 lep + E_{Taxing}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-036]	760 GeV χ̃ mass (m(χ̃) > 300 GeV, λ ₁₂₁ > 0)	
uc,	$\tilde{\chi}, \tilde{\chi},, \tilde{\chi}, \rightarrow \tau \tau v_{\mu}, e \tau v_{\tau} : 3 \text{ lep } + 1\tau + E_{\tau}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-036]	350 GeV $\tilde{\chi}_{1}^{+}$ MASS $(m(\tilde{\chi}_{1}^{0}) > 80 \text{ GeV}, \lambda_{133} > 0)$	
	ğ → qqq : 3-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813]	666 GeV ĝ mass	
	g→tt, t→bs : 2 SS-lep + (0-3b-)j's + E	L=20.7 fb ⁻¹ . 8 TeV [ATLAS-CONF-2013-007]	880 GeV g mass (any m(t))	
	Scalar gluon : 2-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4826]	100-287 GeV Sgluon mass (incl. limit from 1110.2693)	
VVIN	IP Interaction (Do, Dirac χ) : 'monojet' + E	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	704 GeV M* Scale (m _x < 80 GeV, limit of < 687 GeV for E	08)
		10	⁻¹ 1	10

 $^{*}Only$ a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Mass scale [TeV]

I. Antoniadis ()

What is next?

What is next?

Physics is an experimental science

- Exploit the full potential of LHC
- Go on and explore the multi TeV energy range

The LHC timeline

LS1 Machine Consolidation

LS2 Machine upgrades for high Luminosity

- Collimation
- Cryogenics
- · Injector upgrade for high intensity (lower emittance)
- · Phase I for ATLAS : Pixel upgrade, FTK, and new small wheel

LS3 Machine upgrades for high Luminosity

- Upgrade interaction region
- · Crab cavities?
- Phase II: full replacement of tracker, new trigger scheme (add L0), readout electronics.

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.

	2009	Start of LHC
		Run 1, 7+8 TeV, ~25 fb ⁻¹ int. lumi
	2013/14	Prepare LHC for design <i>E</i> & lumi LS1
		Collect ~30 fb ⁻¹ per year at 13/14 TeV
	+	
	2018	Phase-1 upgrade LS2 ultimate lumi
		Twice nominal lumi at 14 TeV, ~100 fb ⁻¹ per year
	~2022	Dhase 2 upgrade 1 CO
	2022	to HI LUC
1		
2		~300 fb ⁻¹ per year,
d		run up to > 3 ab ⁻¹
s		collected
-	+	

IHC timeline

We must fully explore the 10-100 TeV energy range

Linear Colliders - ILC project

Circular Colliders

possible long-term strategy

possible long-term strategy

possible long-term strategy

possible long-term strategy TLEP (e^+e^- up to ~350 GeV c.m.) HE-LHC PSB PS (0.6 km) n) SPS (6.9 km) (pp, 33 TeV c.m.) LHC (26.7 km) **VHE-LHC** (pp, up to 100 TeV c.m.) same detectors! also: e[±] (120 GeV) – p (7 & 50 TeV) collisions

 \geq 50 years of e^+e^- , pp, ep/A physics at highest energies

VHE-LHC: location and size

- 100 TeV p-p collider
- CDR and cost review to be ready for next European Strategy Update
- The tunnel could also house a e⁺- e⁻ Higgs factory (TLEP)

	TLEP
circumference	80 km
Beam energy up to	370 GeV c.m.
max no. of IPs	4
Luminosity/IP at 350 GeV c.m.	1.3x10 ³⁴ cm ⁻² s ⁻¹
Luminosity/IP at 240 GeV c.m.	4.8x10 ³⁴ cm ⁻² s ⁻¹
Luminosity/IP at 160 GeV c.m.	1.6x10 ³⁵ cm ⁻² s ⁻¹
Luminosity/IP at 90 GeV c.m.	5.6 10 ³⁵ cm ⁻² s ⁻¹

A circumference of 100 km is being considered for cost-benefit reasons 20T magnet in 80 km / 16T magnet in 100 km \rightarrow 100 TeV

Future Circular Collider Study - FCC

Mandate

Context

A conceptual design study of options for a future high-energy frontier circular collider at CERN for the post-LHC era shall be carried out, implementing the request in the 2013 update of the European Strategy for Particle Physics (CERN-Council-S/106), which states, inter alia, that:

"..., Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update, when physics results from the LHC running at 14 TeV will be available." and that "CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including highfield magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide."

This design study shall be organised on a world-wide international collaboration basis under the auspices of the European Committee for Future Accelerators (ECFA) and shall be available in time for the next update of the European Strategy for Particle Physics, foreseen by 2018.

	UNIVERSITÉ DE GENÈVE	Future Circular Colliders Study
O	(FEE)	12-15 February 2014 Search University of Geneva - UNI MAIL Europe/Zurich timezone
		Webcast: Please note that this event will be available live via the Webcast Service.
	9.0	Future Circular Collider Kickoff Meeting

Overview

Organizing Committees

Important dates

Timetable

Contribution List

Registration

Registration Form

This meeting is the starting point of a five-year international design study called "Future Circular Colliders" (FCC) with emphasis on a hadron collider with a centre-of-mass energy of the order of 100 TeV in a new 80-100 km tunnel as a long-term goal. The design study includes a 90-400 GeV lepton collider, seen as a potential intermediate step. It also examines a lepton-hadron collider option. The international kick-off meeting for the FCC design study will be held at the University of Geneva, Unimail site, on 12–15 February 2014. The scope of this meeting will be to discuss the main study topics and to prepare the groundwork for the establishment of international collaborations and future studies. The formal part of the meeting will start at noon on Wednesday 12 February and last until noon on Friday 14 February. It will be followed by break-out sessions on the various parts of the project on the Friday afternoon, with summary sessions until noon on Saturday 15 February.

126 GeV Higgs compatible with supersymmetry

Upper bound on the lightest scalar mass:

$$m_h^2 \lesssim m_Z^2 \cos^2 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{A_t^2}{12m_{\tilde{t}}^2} \right) \right] \lesssim (130 \, GeV)^2$$

 $m_h \simeq 126 \,\, {
m GeV} \, \Rightarrow \, m_{ ilde{t}} \simeq 3 \,\, {
m TeV}$ or $A_t \simeq 3 m_{ ilde{t}} \simeq 1.5 \,\, {
m TeV}$

 \Rightarrow % to a few ‰ fine-tuning

minimum of the potential:
$$m_Z^2=2rac{m_1^1-m_2^2 an_\beta^2}{ an^2eta-1}\sim -2m_2^2+\cdots$$

RG evolution: $m_2^2 = m_2^2(M_{\text{GUT}}) - \frac{3\lambda_t^2}{4\pi^2}m_{\tilde{t}}^2\ln\frac{M_{\text{GUT}}}{m_{\tilde{t}}} + \cdots$ [47] $\sim m_2^2(M_{\text{GUT}}) - \mathcal{O}(1)m_{\tilde{t}}^2 + \cdots$ minimize radiative corrections

 $M_{\rm GUT} \rightarrow \Lambda$: low messenger scale (gauge mediation)

$$\delta m_{\tilde{t}}^2 = \frac{8\alpha_s}{3\pi} M_3^2 \ln \frac{\Lambda}{M_3} + \cdots$$

- increase the tree-level upper bound ⇒ extend the MSSM
 extra fields beyond LHC reach → effective field theory approach
- $\bullet\,$ Low scale SUSY breaking \Rightarrow extend MSSM with the goldstino
 - \rightarrow Non linear MSSM $_{\rm [33]}$

••••

MSSM with dim-5 and 6 operators

I.A.-Dudas-Ghilencea-Tziveloglou '08, '09, '10

parametrize new physics above MSSM by higher-dim effective operators

relevant super potential operators of dimension-5:

$$\mathcal{L}^{(5)} = \frac{1}{M} \int d^2 \theta \left(\eta_1 + \eta_2 S \right) \left(H_1 H_2 \right)^2$$

 η_1 : generated for instance by a singlet

$$W = \lambda \sigma H_1 H_2 + M \sigma^2 \quad \rightarrow \quad W_{\text{eff}} = \frac{\lambda^2}{M} (H_1 H_2)^2$$

Strumia '99 ; Brignole-Casas-Espinosa-Navarro '03 Dine-Seiberg-Thomas '07

 η_2 : corresponding soft breaking term

spurion
$$S \equiv m_S \, \theta^2$$
 [30]

Add all possible breaking terms that preserve the good SUSY behavior

 \Rightarrow they should have positive mass dimensions

can be generated if SUSY is spontaneously broken in a different sector and mediated to the SM by gauge interactions or gravity

$$m_{
m susy} \sim rac{\langle F
angle}{M}$$
 or $rac{\langle D
angle}{M} \sim rac{\Lambda^2}{M}$

M: messengers mass or $M_{\rm Planck}$ Λ : SU/SY scale in the extra sector if $M = M_{\rm Pl} \Rightarrow \Lambda \sim 10^{11}$ GeV so that $m_{\rm susy} \sim 1$ TeV

Obtain the general soft terms

must have positive dimensions: masses and trilinear scalar terms $m\phi^3$ necessary but not sufficient condition \rightarrow general rule:

- Introduce an auxiliary chiral superfield S with only F-component $S \equiv m_{susv}\theta^2$: spurion (dimensionless)
- Promote all couplings of the supersymmetric Lagrangian to *S*-dependent functions/superfields
- 1) Matter kinetic terms: $\int d^4\theta \, \Phi^{\dagger} \Phi \rightarrow \int d^4\theta \, Z_{\Phi}(S, S^{\dagger}) \, \Phi^{\dagger} \Phi$

 $Z_{\Phi}(S, S^{\dagger}) = 1 + z_{\phi}SS^{\dagger}$ up to analytic/antianalytic redefinitions $\Phi \rightarrow (1 + cS)\Phi, \ \Phi^{\dagger} \rightarrow (1 + c'S^{\dagger})\Phi^{\dagger}$ \Rightarrow scalar masses: $m_{susv}^2 z_i |\phi_i|^2 \rightarrow m_0^2$ 2) Gauge kinetic terms $\int d^2\theta \, W^2 \to \int d^2\theta \, Z_W(S) \, W^2$

 $Z_{\mathcal{W}}(S) = 1 + z_{\mathcal{W}}S \Rightarrow$ gaugino masses $m_{susy}z_a\lambda^a\lambda^a \rightarrow m_{1/2}$

3) Superpotential $\int d^2 \theta W(\Phi) \rightarrow \int d^2 \theta w(S) W(\Phi) \quad w(S) = 1 + \omega S$ $\Rightarrow m_{susy} \omega_i W_i(\phi) \text{ for } W = \sum_i W_i$ $W_{SSM} \rightarrow B \mu H_1 H_2 + \tilde{q} \mathbf{A}_{\mathbf{u}} \tilde{u}^c H_2 + \tilde{q} \mathbf{A}_{\mathbf{d}} \tilde{d}^c H_1 + \tilde{\ell} \mathbf{A}_{\mathbf{e}} \tilde{e}^c H_1$ matrices in flavor space

trilinear analytic scalar interactions ϕ^3 but not $\phi^2 \phi^*$ [26]

Physical consequences of MSSM₅: Scalar potential

$$\begin{split} \mathcal{V} &= m_1^2 |h_1|^2 + m_2^2 |h_2|^2 + B\mu (h_1 h_2 + \text{h.c.}) + \frac{g_2^2 + g_Y^2}{8} \left(|h_1|^2 - |h_2|^2 \right)^2 \\ &+ \left(|h_1|^2 + |h_2|^2 \right) \left(\eta_1 h_1 h_2 + \text{h.c.} \right) + \frac{1}{2} \left[\eta_2 (h_1 h_2)^2 + \text{h.c.} \right] \\ &+ \eta_1^2 |h_1 h_2|^2 \left(|h_1|^2 + |h_2|^2 \right) \end{split}$$

- $\eta_{1,2} \Rightarrow$ quartic terms along the D-flat direction $|h_1| = |h_2|$
- tree-level mass can increase significantly
- bigger parameter space for LSP being dark matter

Bernal-Blum-Nir-Losada '09

• last term $\sim \eta_1^2$: guarantees stability of the potential

but requires addition of dim-6 operators

MSSM Higss with dim-6 operators

dim-6 operators can have an independent scale from dim-5

Classification of all dim-6 contributing to the scalar potential (without SUSY) \Rightarrow

large tan β expansion: $\delta_6 m_h^2 = f v^2 + \cdots$ constant receiving contributions from several operators

$$f \sim f_0 imes \left(\mu^2/M^2, \ m_S^2/M^2, \ \mu m_S/M^2, \ v^2/M^2
ight)$$

 $m_S=1$ TeV, M=10 TeV, $f_0\sim 1-2.5$ for each operator

 $\Rightarrow m_h \simeq 103 - 119 \text{ GeV}$

 \Rightarrow MSSM with dim-5 and dim-6 operators:

possible resolution of the MSSM fine-tuning problem [25]

Fine-tuning in Constrained MSSM₅

I.A.-Dudas-Ghilencea-Tziveloglou '11

 m_h : 2-loop (LL) CMSSM value; δm_h : correction from dim-5 operator Left plot: M = 10 TeV; Right plot: M = 8 TeV; Below solid line: $\Delta < 200$

Blue to Red: Dark Matter constraint Best to 3σ

Non-linear supersymmetry \Rightarrow goldstino mode χ Volkov-Akulov '73

• Effective field theory of SUSY breaking at low energies $m_{\chi} << m_{susy}$ e.g. gauge mediation dominant vs gravity mediation

 χ : longitudinal gravitino with $m_{\chi} \simeq rac{m_{susy}^2}{M_{Planck}} \lesssim m_{soft} << m_{susy}$

 $M_{Planck} \rightarrow \infty$: SUGRA decoupled

massless χ coupled to matter $\sim 1/m_{susy}$

• Non-linear SUSY transformations:

$$\delta\chi_{\alpha} = \frac{\xi_{\alpha}}{\kappa} + \kappa \Lambda^{\mu}_{\xi} \partial_{\mu}\chi_{\alpha} \qquad \Lambda^{\mu}_{\xi} = -i\left(\chi\sigma^{\mu}\bar{\xi} - \xi\sigma^{\mu}\bar{\chi}\right)$$

 κ : goldstino decay constant (susy breaking scale) $\kappa = (\sqrt{2}m_{susy})^{-2}$

Constrained superfields

Rocek-Tseytlin '78, Lindstrom-Rocek '79, Komargodski-Seiberg '09

spontaneous global SUSY: no supercharge but still conserved supercurrent

 \Rightarrow superpartners exist in operator space (not as 1-particle states)

 \Rightarrow constrained superfields: 'eliminate' superpartners

Goldstino: chiral superfield X_{NL} satisfying $X_{NL}^2 = 0 \Rightarrow$

$$\begin{split} X_{NL}(y) &= \frac{\chi^2}{2F} + \sqrt{2}\theta\chi + \theta^2 F \qquad y^\mu = x^\mu + i\theta\sigma^\mu\bar{\theta} \\ &= F\Theta^2 \qquad \Theta = \theta + \frac{\chi}{\sqrt{2}F} \\ \mathcal{L}_{NL} &= \int d^4\theta X_{NL} \bar{X}_{NL} - \frac{1}{\sqrt{2}\kappa} \left\{ \int d^2\theta X_{NL} + h.c. \right\} = \mathcal{L}_{Volkov-Akulov} \end{split}$$

$$F = \frac{1}{\sqrt{2}\kappa} + \dots$$

replace spurion superfield $S = m_{soft} \theta^2$ by goldstino constrained superfield

$$S \to \sqrt{2}\kappa m_{soft} X_{NL} = \frac{m_{soft}}{m_{susy}} X_{NL}$$

 \Rightarrow Non-linear MSSM

F-auxiliary in X_{NL} : dynamical field with no derivatives to be solved

$$-\bar{F} = m_{susy}^2 + \frac{B\mu}{m_{susy}^2} h_1 h_2 + \frac{A_u}{m_{susy}^2} \tilde{u}_R \tilde{q} h_2 + \cdots$$

 \Rightarrow compact form for all goldstino couplings at linear and non-linear level

with

$$\begin{aligned} \mathcal{L}_{H} &= \sum_{i=1,2} \frac{m_{i}^{2}}{m_{susy}^{4}} \int d^{4}\theta \ X_{NL}^{\dagger} X_{NL} \ H_{i}^{\dagger} \ e^{V_{i}} \ H_{i} \\ \mathcal{L}_{m} &= \sum_{\Phi} \frac{m_{\Phi}^{2}}{m_{susy}^{4}} \int d^{4}\theta \ X_{NL}^{\dagger} X_{NL} \ \Phi^{\dagger} e^{V} \ \Phi \quad ; \quad \Phi = Q, U^{c}, D^{c}, L, E^{c} \\ \mathcal{L}_{AB} &= \frac{1}{m_{susy}^{2}} \int d^{2}\theta \ X_{nl} \ (A_{u} \ H_{2} \ Q \ U^{c} + A_{d} \ Q \ D^{c} \ H_{1} + A_{e} \ L \ E^{c} \ H_{1}) \\ &+ \frac{B\mu}{m_{susy}^{2}} \int d^{2}\theta \ X_{NL} \ H_{1} \ H_{2} + h.c. \end{aligned}$$
$$\begin{aligned} \mathcal{L}_{g} &= \sum_{i=1}^{3} \frac{1}{8g_{i}^{2}} \frac{m_{\lambda_{i}}}{m_{susy}^{2}} \int d^{2}\theta \ X_{NL} \ \mathrm{Tr} \ [W^{\alpha} \ W_{\alpha}]_{i} + h.c. \end{aligned}$$

 $\mathcal{L} = \mathcal{L}_{SUSY} + \mathcal{L}_{X_{NI}} + \mathcal{L}_{H} + \mathcal{L}_{m} + \mathcal{L}_{AB} + \mathcal{L}_{g}$

Higgs potential is modified:

$$V = V_{MSSM} + rac{2\kappa^2}{\kappa^2} \left| m_1^2 |h_1|^2 + m_2^2 |h_2|^2 + B \mu h_1 h_2 \right|^2 + \mathcal{O}(\kappa^4) \quad \Rightarrow$$

 $m_{1,2}, B\mu$: soft mass parameters, μ : higgsino mass

Classical value of light higgs mass can be increased significantly

for $m_{susy} \sim$ a few TeV

large tan
$$\beta$$
 limit: $m_h^2 = m_Z^2 + \frac{v^2}{2m_{susy}^2}(2\mu^2 + m_Z^2)^2 + \cdots$

Quartic higgs coupling increases for large soft masses \Rightarrow

MSSM 'little' fine tuning of the EW scale is alleviated

I. Antoniadis ()

Validity of perturbative expansion: $m_i^2 v^2 / m_{susy}^4 < < 1$

I. Antoniadis ()

Fine-tuning measures:

Ellis-Enqvist-Nanopoulos-Zwirner '86 Barbieri-Giudice '88, Anderson-Castano '94

$$\Delta_m = \max \left| \Delta_{\gamma^2} \right|, \quad \Delta_q = \left\{ \sum_{\gamma} \Delta_{\gamma^2}^2 \right\}^{1/2}, \text{ with } \Delta_{\gamma^2} \equiv \frac{\partial \ln v^2}{\partial \ln \gamma^2}$$
$$\gamma = \{m_0, m_{12}, A_t, B_0, \mu_0\}, \quad v = \text{EW scale}$$

The Constrained Non-Linear MSSM

Minimal values of Δ_m (left) and Δ_q (right) for tan $\beta = 10$ and m_{susy} from the lowest to the top curve: 2.8 TeV (red), 3.2 TeV (orange), 3.9 TeV (brown), 5 TeV (green), 5.5 TeV (dark green), 6.3 TeV (cyan), 7.4 TeV (blue), 8 TeV (dark blue), 8.7 TeV (black).

 $m_{susy}\simeq 3~{
m TeV} \Rightarrow \Delta^{NL}\sim \Delta/10$

Non-liner SUSY in supergravity

I.A.-Dudas-Ferrara-Sagnotti '14

$$\mathcal{K} = -3\log(1 - X\bar{X}) \equiv 3X\bar{X}$$
; $\mathcal{W} = fX + W_0$ $X \equiv X_{NL}$

$$\Rightarrow$$
 $V = rac{1}{3}|f|^2 - 3|W_0|^2$; $m_{3/2}^2 = |W_0|^2$

- V can have any sign contrary to global NL SUSY
- NL SUSY in flat space $\Rightarrow f = 3 m_{3/2} M_p$
- Dual gravitational formulation: $\mathcal{R}^2 = 0 \leftarrow \text{chiral curvature superfield}$
- Minimal SUSY extension of R^2 gravity

Starobinsky model of inflation

$$\mathcal{L} = \frac{1}{2}R + \alpha R^2$$

equivalent to a scalar field with exponential potential:

$$\mathcal{L} = \frac{1}{2}R - \frac{1}{2}(\partial\phi)^2 - \frac{M^2}{12}\left(1 - e^{-\sqrt{\frac{2}{3}}\phi}\right)^2 \qquad M^2 = \frac{3}{4\alpha}$$

Note that the two metrics are not the same

supersymmetric extension:

add D-term $\mathcal{R}\bar{\mathcal{R}}$ because F-term \mathcal{R}^2 does not contain \mathcal{R}^2

 \Rightarrow brings two chiral multiplets

SUSY extension of Starobinsky model

$$K = -3\ln(T + \bar{T} - C\bar{C})$$
; $W = MC(T - \frac{1}{2})$

• T contains the inflaton: Re $T = e^{\sqrt{\frac{2}{3}}\phi}$

• $C \sim \mathcal{R}$ is unstable during inflation

 \Rightarrow add higher order terms to stabilize it

e.g. $C\overline{C} \rightarrow h(C,\overline{C}) = C\overline{C} - \zeta(C\overline{C})^2$ Kallosh-Linde '13

• SUSY is broken during inflation with C the goldstino superfield

Minimal SUSY extension that evades stability problem:

replace C by the non-linear multiplet X

Non-linear Starobinsky supergravity

$$K = -3\ln(T + \overline{T} - X\overline{X})$$
; $W = MXT + fX + W_0 \Rightarrow$

$$\mathcal{L} = \frac{1}{2}R - \frac{1}{2}(\partial\phi)^2 - \frac{M^2}{12}\left(1 - e^{-\sqrt{\frac{2}{3}}\phi}\right)^2 - \frac{1}{2}e^{-2\sqrt{\frac{2}{3}}\phi}(\partial a)^2 - \frac{M^2}{18}e^{-2\sqrt{\frac{2}{3}}\phi}a^2$$

• axion a much heavier than ϕ during inflation, decouples:

$$m_{\phi} = \frac{M}{3}e^{-\sqrt{\frac{2}{3}}\phi_0} << m_a = \frac{M}{3}$$

inflation scale *M* independent from NL-SUSY breaking scale *f* ⇒ compatible with low energy SUSY

• string realization? [70]

Fig. 1. Marginalized joint 68% and 95% CL regions for n_s and r_{0.002} from *Planck* in combination with other data sets compared to the theoretical predictions of selected inflationary models.

I. Antoniadis ()

Alternative answer: Low UV cutoff $\Lambda \sim \text{TeV}$

- low scale gravity \Rightarrow extra dimensions: large flat or warped
- low string scale \Rightarrow low scale gravity, ultra weak string coupling

 $M_{s} \sim 1 \text{ TeV} \Rightarrow \text{volume } R_{\perp}^{n} = 10^{32} l_{s}^{n}$ [??] $(R_{\perp} \sim .1 - 10^{-13} \text{ mm for } n = 2 - 6)$

- spectacular model independent predictions
- radical change of high energy physics at the TeV scale

Moreover no little hierarchy problem:

radiative electroweak symmetry breaking with no logs [24]

 $\Lambda \sim$ a few TeV and $m_{H}^{2} =$ a loop factor $imes \Lambda^{2}$

But unification has to be probably dropped

New Dark Matter candidates e.g. in the extra dims

Connect string theory to the real world

- Is it a tool for strong coupling dynamics or a theory of fundamental forces?
- Are there low energy string predictions testable at LHC?
- What can we hope to learn from LHC on string phenomenology?

At what energies strings may be observed?

Very different answers depending mainly on the value of the string scale M_s

Before 1994: $M_s \simeq M_{\rm Planck} \sim 10^{18}~{\rm GeV}$ $I_s \simeq 10^{-32}~{\rm cm}$ After 1994:

- arbitrary parameter : Planck mass $M_P \longrightarrow \text{TeV}$
- physical motivations \Rightarrow favored energy regions:

• High :
$$\left\{ \begin{array}{ll} M_P^* \simeq 10^{18} \ {\rm GeV} & {\rm Heterotic \ scale} \\ \\ M_{\rm GUT} \simeq 10^{16} \ {\rm GeV} & {\rm Unification \ scale} \end{array} \right.$$

• Intermediate : around 10¹¹ GeV $(M_s^2/M_P \sim {
m TeV})$

SUSY breaking, strong CP axion, see-saw scale

• Low : TeV (hierarchy problem)

perturbative heterotic string : the most natural for SUSY and unification gravity and gauge interactions have same origin massless excitations of the closed string

But mismatch between string and GUT scales:

 $M_s = g_H M_P \simeq 50 M_{
m GUT}$ $g_H^2 \simeq lpha_{
m GUT} \simeq 1/25$ [57]

in GUTs only one prediction from 3 gauge couplings unification: $\sin^2 \theta_W$ introduce large threshold corrections or strong coupling $\rightarrow M_s \simeq M_{GUT}$ but loose predictivity

gravity + gauge kinetic terms [58]

$$\int [d^{10}x] \frac{1}{g_H^2} M_H^8 \mathcal{R}^{(10)} + \int [d^{10}x] \frac{1}{g_H^2} M_H^6 \mathcal{F}_{MN}^2 \quad \text{simplified units: } 2 = \pi = 1$$

Compactification in 4 dims on a 6-dim manifold of volume $V_6 \Rightarrow$

$$\int [d^4x] \frac{V_6}{g_H^2} M_H^8 \mathcal{R}^{(4)} + \int [d^4x] \frac{V_6}{g_H^2} M_H^6 \mathcal{F}_{\mu\nu}^2$$

$$\begin{array}{c} || \\ M_P^2 \\ M_P^2 \\ || \\ M_P^2 \\ || \\ 1/g^2 \\ || \\ M_H \\ || \\ g_H \\ || \\ M_H \\ || \\ g_H \\ |$$

GUT prediction of QCD coupling

I. Antoniadis ()

Open strings and D-branes

Generic spectrum: N coincident branes $\Rightarrow U(N)$

a-stack

```
endpoint transformation: N_a or \overline{N}_a U(1)_a charge: +1 or -1

\Rightarrow "baryon" number
```

- open strings from the same stack \Rightarrow adjoint gauge multiplets of $U(N_a)$
- stretched between two stacks \Rightarrow bifundamentals of $U(N_a) \times U(N_b)$

a-stack

non-oriented strings \Rightarrow also:

- orthogonal and symplectic groups SO(N), Sp(N)
- matter in antisymmetric + symmetric reps

General analysis using 3 brane stacks

$$\Rightarrow U(3) \times U(2) \times U(1)$$

antiquarks u^c, d^c ($\bar{3}, 1$) :

antisymmetric of U(3) or bifundamental $U(3) \leftrightarrow U(1)$

 \Rightarrow 3 models: antisymmetric is u^c , d^c or none

Intersecting branes: 'perfect' for SM embedding

- product of unitary gauge groups (brane stacks) and bi-fundamental reps but no unification: no prediction for M_s , independent gauge couplings however GUTs: problematic:
 - no perturbative SO(10) spinors
 - no top-quark Yukawa coupling in SU(5): 10105_H
 SU(5) is part of U(5) ⇒ U(1) charges : 10 charge 2 ; 5_H charge ±1
 ⇒ cannot balance charges with SU(5) singlets
 can be generated by D-brane instantons but ...
- \rightarrow Non-perturbative M/F-theory models:

combine good properties of heterotic and intersecting branes but lack exact description for systematic studies

Type I/II string theory ⇒ D-brane world I.A.-Arkani-Hamed-Dimopoulos-Dvali '98

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

Dimensions of finite size: *n* transverse 6 - n parallel [59] calculability $\Rightarrow R_{\parallel} \simeq I_{\text{string}}$; R_{\perp} arbitrary

small $M_s/M_P \Rightarrow$ extra-large R_\perp

 $R_{\perp} \sim .1 - 10^{-13}$ mm for n = 2 - 6

distances $< R_{\perp}$: gravity (4+*n*)-dim \rightarrow strong at 10⁻¹⁶ cm

 $M_{\rm s} \sim 1 {
m TeV} \Rightarrow R_{\perp}^n = 10^{32} I_{\rm s}^n$ [??]

Type I/II strings: gravity and gauge interactions have different origin gravity + gauge kinetic terms $\int [d^{10}x] \frac{1}{g_s^2} M_s^8 \mathcal{R}^{(10)} + \int [d^{p+1}x] \frac{1}{g_s} M_s^{p-3} \mathcal{F}_{MN}^2 [51]$

Compactification in 4 dims \Rightarrow

Braneworld

I.A.-Arkani-Hamed-Dimopoulos-Dvali '98

2 types of compact extra dimensions:

• parallel (d_{\parallel}): $\lesssim 10^{-16}$ cm (TeV) • transverse (\perp): $\lesssim 0.1 \text{ mm} (\text{meV})$

Standard Model on D-branes I.A.-Kiritsis-Rizos-Tomaras '02

Accelerator signatures: 4 different scales

- Gravitational radiation in the bulk \Rightarrow missing energy present LHC bounds: $M_* \gtrsim 3-5$ TeV
- Massive string vibrations \Rightarrow e.g. resonances in dijet distribution [64]

 $M_j^2 = M_0^2 + M_s^2 j$; maximal spin: j + 1

higher spin excitations of quarks and gluons with strong interactions present LHC limits: $M_s\gtrsim 5~{
m TeV}$

• Large TeV dimensions \Rightarrow KK resonances of SM gauge bosons I.A. '90

$$M_k^2 = M_0^2 + k^2/R^2$$
; $k = \pm 1, \pm 2, \dots$

experimental limits: $R^{-1} \gtrsim 0.5 - 4$ TeV (UED - localized fermions) [67]

• extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor from M_s [68]

I. Antoniadis ()

String-size black hole energy threshold : $M_{
m BH}\simeq M_s/g_s^2$

Horowitz-Polchinski '96, Meade-Randall '07

- string size black hole: $r_H \sim l_s = M_s^{-1}$
- black hole mass: $M_{\rm BH} \sim r_H^{d-3}/G_N$ $G_N \sim l_s^{d-2}g_s^2$

weakly coupled theory \Rightarrow strong gravity effects occur much above M_s , M_* $g_s \sim 0.1$ (gauge coupling) $\Rightarrow M_{\rm BH} \sim 100 M_s$

Comparison with Regge excitations : $M_j = M_s \sqrt{j} \Rightarrow$

production of $j\sim 1/g_s^4\sim 10^4$ string states before reach $M_{
m BH}$ [61]

Tree level superstring amplitudes involving at most 2 fermions and gluons: model independent for any compactification, # of susy's, even none no intermediate exchange of KK, windings or graviton emmission Universal sum over infinite exchange of string (Regge) excitations

Partonic Luminosity Parton luminosities in pp above TeV are dominated by gq, gg \Rightarrow model independent 10 $gq \rightarrow gq, gg \rightarrow gg, gg \rightarrow q\bar{q}$ 10 10 35

M_s(TeV)

String Resonances production at Hadron Colliders I.A.-Anchordoqui-Dai-Feng-Goldberg-Huang-Lüst-Stojkovic-Taylor '14

String Resonances production at Hadron Colliders I.A.-Anchordoqui-Dai-Feng-Goldberg-Huang-Lüst-Stojkovic-Taylor '14

[61]

Localized fermions (on 3-brane intersections)

 \Rightarrow single production of KK modes

I.A.-Benakli '94

• strong bounds indirect effects

• new resonances but at most n = 1

Otherwise KK momentum conservation

 \Rightarrow pair production of KK modes (universal dims)

- weak bounds
- no resonances
- \bullet lightest KK stable \Rightarrow dark matter candidate

Servant-Tait '02 [61]

Standard Model on D-branes : SM⁺⁺

TeV string scale Anchordogui-IA-Goldberg-Huang-Lüst-Taylor '11

- B and L become massive due to anomalies Green-Schwarz terms
- the global symmetries remain in perturbation
 - Baryon number \Rightarrow proton stability
 - Lepton number \Rightarrow protect small neutrino masses

- Lepton number \Rightarrow process _ no Lepton number $\Rightarrow \frac{1}{M_s}LLHH \rightarrow$ Majorana mass: $\frac{\langle H \rangle^2}{M_s}LL$ $\swarrow \sim$ GeV

• $B, L \Rightarrow$ extra Z's

with possible leptophobic couplings leading to CDF-type Wij events $Z' \simeq B$ lighter than 4d anomaly free $Z'' \simeq B - L$

Conclusions

- Discovery of a Higgs scalar at the LHC: important milestone of the LHC research program
- Precise measurement of its couplings is of primary importance
- Hint on the origin of mass hierarchy and of BSM physics
 - natural or unnatural SUSY?
 - Iow string scale in some realization?
 - something new and unexpected?
 - all options are still open
- LHC enters a new era with possible new discoveries
- Future plans to explore the 10-100 TeV energy frontier