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Abstract

We consider a double-well supersymmetric matrix model and its
interpretation as a nonperturbative definition of two-dimensional type
IIA superstring theory. The interpretation is confirmed by direct
comparison of symmetries and amplitudes in both sides of the ma-
trix model and the IIA superstring theory. Next, we obtain the full
nonperturbative free energy of the matrix model in terms of the Tracy-
Widom distribution in random matrix theory. Its weak coupling ex-
pansion implies spontaneous supersymmetry breaking due to instan-
tons, and strong coupling behavior suggests the existence of a well-
defined S-dual theory. Furthermore, from the expression of the free
energy, we see a smooth connection between a non-supersymmetric
string theory and the IIA superstring theory.

PACS codes: 02.10.Yn; 11.25.Pm; 11.25.Sq

1. Introduction

Solvable matrix models for two-dimensional quantum gravity or noncriti-
cal string theory had been vigorously investigated around 1990, focusing
on nonperturbative aspects in string theory [5]. While this approach has
been successful for bosonic string theory, little has been known for super-
string theory, in particular theories possessing target-space supersymmetry
(SUSY). So it would be worth while to considering (solvable) matrix models
describing superstring theory with target-space SUSY. In this article, we
discuss correspondence between a simple zero-dimensional SUSY double-
well matrix model and two-dimensional type IIA superstring theory on a
nontrivial Ramond-Ramond (RR) background. Then, nonperturbative ef-
fect of the matrix model is computed in its double scaling limit. As a result,
we find that SUSY is spontaneously broken due to instantons in the matrix
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model. According to the correspondence, this suggests spontaneous SUSY
breaking at the nonperturbative level in the type IIA superstring theory.

We hope our analysis is helpful to understand nonperturbative dynamics
of matrix models of super Yang-Mills type for critical superstring theory [6,
7, 8].

2. Review of double-well SUSY matrix model

We give a brief review of a SUSY matrix model given by the following
action [9]:

S = Ntr

[
1

2
B2 + iB(ϕ2 − µ2) + ψ̄(ϕψ + ψϕ)

]
, (1)

where B and ϕ are N × N hermitian matrices, and ψ and ψ̄ are N × N
Grassmann-odd matrices. The action is invariant under SUSY transforma-
tions generated by Q and Q̄:

Qϕ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0, (2)

Q̄ϕ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB, Q̄B = 0, (3)

which leads to the nilpotency: Q2 = Q̄2 = {Q, Q̄} = 0. A large-N saddle
point for the eigenvalue distribution of the matrix ϕ: ρ(x) ≡ 1

N tr δ(x −
ϕ) has two supports [−b,−a] ∪ [a, b] in the case of µ2 > 2 (the two-cut
solution) and a single support [−c, c] for µ2 < 2 (the one-cut solution).

Here, a =
√
µ2 − 2, b =

√
µ2 + 2 and c =

√
2
3

(
µ2 +

√
µ4 + 12

)1/2
. The

two-cut solution is characterized by the filling fractions (ν+, ν−) satisfying
ν+ + ν− = 1, which indicate that the ratio of eigenvalues distributing over
[a, b] and those distributing over [−b,−a] is ν+ : ν−. The large-N free

energy and the expectation values
⟨

1
N trBn

⟩
(n = 1, 2, · · ·) evaluated at

the two-cut solution turn out to all vanish [9], strongly suggesting that the
solution preserves SUSY. Thus, we conclude that the SUSY minima are
infinitely degenerate and parametrized by (ν+, ν−) in the simple large-N
limit (the planar limit). On the other hand, the one-cut solution gives

nonzero values of
⟨

1
N trB

⟩
and of the large-N free energy, showing that

SUSY is broken [10]. The transition between the SUSY phase (µ2 > 2) and
the SUSY broken phase (µ2 < 2) is of the third order. Namely, the third
derivative of the free energy with respect to µ2 has a jump at µ2 = 2.

In the SUSY phase (µ2 > 2) with the filling fraction (ν+, ν−), the planar
correlation functions of the operators Φ2k+1 (k = 0, 1, 2, · · ·) 1:

Φ2k+1 ≡
1

N
trϕ2k+1 + (mixing) (4)

1The second term “(mixing)” in (4) consists of lower even powers of ϕ. Its explicit
form is given in ref. [1].
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behave as 2⟨
n∏
i=1

Φ2ki+1

⟩
C,0

∼ (ν+ − ν−)
n uk1,···,kn ω

3+
∑n

i=1
(ki−1) (lnω)n (5)

with ω ≡ 1
4(µ

2 − 2) and the constants uk1,···,kn taking the form as

uk =
2k+2

π

(2k + 1)!!

(k + 2)!
,

uk,ℓ = − 1

2π2
1

k + ℓ+ 1

(2k + 1)!

(k!)2
(2ℓ+ 1)!

(ℓ!)2
,

· · · . (6)

The planar two-point functions of fermions Ψ2k+1 =
1
N trψ2k+1+(mixing)

and Ψ̄2ℓ+1 = 1
N tr ψ̄2ℓ+1 + (mixing) are evaluated as⟨
Ψ2k+1Ψ̄2ℓ+1

⟩
C,0 ∼ δk,ℓ vk (ν+ − ν−)

2k+1ω2k+1 lnω (7)

with vk being constants v0 =
1
π , v1 =

6
π , · · ·.

3. 2D type IIA superstring

The type II superstring theory discussed in refs. [11, 12, 13] has the tar-
get space (φ, x) ∈ (Liouville direction) × (S1 with self-dual radius). The
holomorphic energy-momentum tensor on the string world-sheet is

T = −1

2
(∂x)2 − 1

2
ψx∂ψx −

1

2
(∂φ)2 + ∂2φ− 1

2
ψℓ∂ψℓ (8)

excluding ghosts’ part. ψx and ψℓ are superpartners of x and φ, respectively.
Target-space supercurrents in the type IIA theory

q+(z) = e−
1
2
ϕ(z)− i

2
H(z)−ix(z), q̄−(z̄) = e−

1
2
ϕ̄(z̄)+ i

2
H̄(z̄)+ix̄(z̄) (9)

exist only on the S1 target space of the self-dual radius. ϕ (ϕ̄) is the
holomorphic (anti-holomorphic) bosonized superconformal ghost, and the

fermions are bosonized as ψℓ ± iψx =
√
2 e∓iH , ψ̄ℓ ± iψ̄x =

√
2 e∓iH̄ . In

addition, we should care about cocycle factors in order to realize the an-
ticommuting nature between q+ and q̄−. Supercurrents with the cocycle
factors are

q̂+(z) = eπβ(
1
2
pϕ̄−i

1
2
ph̄−ipx̄) q+(z), ˆ̄q−(w̄) = e−πβ(

1
2
pϕ+i

1
2
ph+ipx) q̄−(w̄),

(10)

2The suffix “C” means that connected parts are taken, and the symbol “∼” denotes
equality up to additive less singular terms.
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where β ∈ Z+ 1
2 , and pϕ, ph and px (pϕ̄, ph̄ and px̄) are momentum modes

of holomorphic part (anti-holomorphic part) of free bosons [2]. Then the
supercharges

Q̂+ =

∮
dz

2πi
q̂+(z),

ˆ̄Q− =

∮
dz̄

2πi
ˆ̄q−(z̄) (11)

are nilpotent Q̂2
+ = ˆ̄Q

2

− = {Q̂+,
ˆ̄Q−} = 0, which matches the property of

the supercharges Q and Q̄ in the matrix model.
The spectrum except special massive states is represented by the NS

“tachyon” 3 vertex operator (in (−1) picture):

Tk = e−ϕ+ikx+pℓφ, T̄k̄ = e−ϕ̄+ik̄x̄+pℓφ̄, (12)

and by the R vertex operator (in (−1
2) picture):

Vk, ϵ = e−
1
2
ϕ+ i

2
ϵH+ikx+pℓφ, V̄k̄, ϵ̄ = e−

1
2
ϕ̄+ i

2
ϵ̄H̄+ik̄x̄+pℓφ̄ (13)

with ϵ, ϵ̄ = ±1. Cocycle factors for vertex operators are introduced as [2]

T̂k(z) = eπβ(pϕ̄+ikpx̄) Tk(z),
ˆ̄T k̄(z̄) = e−πβ(pϕ+ik̄px) T̄k̄(z̄),

V̂k, ϵ(z) = eπβ(
1
2
pϕ̄+i

ϵ
2
ph̄+ikpx̄) Vk, ϵ(z),

ˆ̄V k̄, ϵ̄(z̄) = e−πβ(
1
2
pϕ+i

ϵ̄
2
ph+ik̄px) V̄k̄, ϵ̄(z̄). (14)

Locality with the supercurrents, mutual locality, superconformal invariance
and the level matching condition determine physical vertex operators. As
discussed in [13], there are two consistent sets of physical vertex operators
- “momentum background” and “winding background”. Here, we consider
the “winding background”. 4 The physical spectrum in the “winding back-
ground” is given by

(NS, NS) : T̂k
ˆ̄T−k (k ∈ Z+

1

2
),

(R+, R−) : V̂k,+1
ˆ̄V −k,−1 (k =

1

2
,
3

2
, · · ·),

(R−, R+) : V̂−k,−1
ˆ̄V k,+1 (k = 0, 1, 2, · · ·),

(NS, R−) : T̂−k
ˆ̄V −k,−1 (k =

1

2
,
3

2
, · · ·),

(R+, NS) : V̂k,+1
ˆ̄T k (k =

1

2
,
3

2
, · · ·), (15)

3In two dimensions, “tachyon” is not truely tachyonic but massless.
4We can repeat the parallel argument for “momentum background” in the type IIB

theory, which is equivalent to the “winding background” in the type IIA theory through
T-duality with respect to the S1 direction.
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where we take a branch of pℓ = 1 − |k| satisfying the locality bound pℓ ≤
Q/2 = 1 [14].

Comparing the SUSY transformation property of the matrix-model op-
erators and that of the above vertex operators leads to the correspon-
dence [1]:

Φ2k+1 ⇔ Vϕ(k) ≡
∫
d2z V̂k+ 1

2
,+1(z)

ˆ̄V −k− 1
2
,−1(z̄),

Ψ2k+1 ⇔ Vψ(k) ≡
∫
d2z T̂−k− 1

2
(z) ˆ̄V −k− 1

2
,−1(z̄),

Ψ̄2k+1 ⇔ Vψ̄(k) ≡
∫
d2z V̂k+ 1

2
,+1(z)

ˆ̄T k+ 1
2
(z̄),

1

N
tr (−iB) ⇔ VB(0) ≡

∫
d2z T̂− 1

2
(z) ˆ̄T 1

2
(z̄) (16)

for k = 0, 1, 2, · · ·. Note that (R−, R+) operators are singlets under the

target-space SUSYs Q̂+,
ˆ̄Q−, and appear to have no counterpart in the ma-

trix model side. Since the expectation value of operators measuring an RR
charge ⟨Φ2k+1⟩0 does not vanish as seen in (5), we conjecture that the ma-
trix model corresponds to the type IIA theory on a nontrivial background
of the (R−, R+) fields. As a check of the conjecture, introducing the (R−,
R+) background in the form of vertex operators

WRR = (ν+ − ν−)
∑
k∈Z

ak µ
k+1
1 VRR

k ,

VRR
k ≡


∫
d2z V̂k,−1(z)

ˆ̄V −k,+1(z̄) (pℓ = 1− |k|, k ≤ 0)∫
d2z V̂

(nonlocal)
−k,−1 (z) ˆ̄V

(nonlocal)

k,+1 (z̄) (pℓ = 1 + |k|, k ≥ 1)

(17)

with ak being numerical constants, we consider correlation functions among
integrated vertex operators Vi in the IIA theory on a nontrivial (R−, R+)
background in the form:⟨⟨∏

i

Vi

⟩⟩
≡
⟨(∏

i

Vi

)
eWRR

⟩
. (18)

When the strength of the background (ν+ − ν−) is small, we can com-
pute the correlation functions by expanding the background as eWRR =
1+WRR + 1

2!(WRR)
2 + · · ·. Results of the computation support the equiv-

alence of the matrix model to the IIA superstring theory on the (R−, R+)
background [2]. Interestingly, in the calculation of the IIA amplitudes, we
see that the multiple powers of lnω in the matrix-model correlators (5) are
identified with resonances among the external particles and the (R−, R+)
background.
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4. Nonperturbative SUSY breaking in the matrix model

In this section, we obtain the full nonperturbative free energy of the matrix
model as the Tracy-Widom distribution in random matrix theory in the
double scaling limit

N → ∞, ω → 0 with s ≡ 4N2/3ω fixed. (19)

In its weakly coupled region (s: large), instanton effects can be seen in the
matrix model which are nonperturbative in 1/N . Although such effects are
of the order e−N and vanish in the simple large N limit, we will see that
they are nonvanishing in the double scaling limit (19).

The partition function of the matrix model given by the action (1) is
expressed as

Z =

∫
dN

2
ϕ e−N

1
2
tr(ϕ2−µ2)2 det(ϕ⊗ 1+ 1⊗ ϕ)

= C̃N

∫ ( N∏
i=1

dλi
)
△(λ)2

N∏
i,j=1

(λi + λj) e
−N
∑N

i=1
1
2
(λ2i−µ

2)2 , (20)

after integrating out matrices other than ϕ. Here, 1 is anN×N unit matrix,
λi (i = 1, · · · , N) are eigenvalues of ϕ, and △(λ) denotes the Vandermonde

determinant △(λ) =
∏
i>j(λi − λj). C̃N is an numerical factor depending

only on N given by

1

C̃N
=

∫ ( N∏
i=1

dλi
)
△(λ)2 e−N

∑N

i=1
1
2
λ2i = (2π)

N
2

∏N
k=0 k!

N
N2

2

. (21)

Contributions to the partition function are divided by sectors labeled by
the filling fraction (ν+, ν−) as

Z =
N∑

ν−N=0

N !

(ν+N)!(ν−N)!
Z(ν+,ν−) (22)

with

Z(ν+,ν−) ≡ C̃N

∫ ∞

0

ν+N∏
i=1

dλi

∫ 0

−∞

 N∏
j=ν+N+1

dλj

 (
N∏
n=1

2λn

)

×
{ ∏
n>m

(λ2n − λ2m)
2

}
e−N

∑N

i=1
1
2
(λ2i−µ

2)2 . (23)

Here, it is easy to see

Z(ν+,ν−) = (−1)ν−NZ(1,0), (24)
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which leads to the vanishing partition function:

Z = (1 + (−1))NZ(1,0) = 0. (25)

In order for expectation values normalized by the partition function to be
well-defined, we regularize the partition function by introducing a factor
e−iαν−N with small α in front of Z(ν+,ν−). The regularized partition function
reads

Zα ≡
N∑

ν−N=0

N !

(ν+N)!(ν−N)!
e−iαν−NZ(ν+,ν−) = (1− e−iα)N Z(1,0). (26)

Notice that calculations in perturbation theory of 1/N in section 2. con-
cern the partition function in a single sector (Z(ν+,ν−)), in which such a
regularization was not needed. On the other hand, since nonperturbative
contributions to be computed here possibly communicate among various
sectors of filling fractions, we should consider the total partition function
(22) and its null result requires the regularization.

The expectation value of 1
N tr(iB) under the regularization (26) is ex-

pressed as⟨
1

N
tr (iB)

⟩
α
=

1

N2

1

Zα

∂

∂(µ2)
Zα =

1

N2

1

Z(1,0)

∂

∂(µ2)
Z(1,0) (27)

due to a cancellation of the factor (1−e−iα)N in (26) between the numerator

and the denominator. The regularized expectation value
⟨

1
N tr (iB)

⟩
α
is

independent of α and well-defined in the limit α → 0, and thus serves as
an order parameter for spontaneous SUSY breaking.

4.1. Tracy-Widom distribution

Under the change of variables xi = −λ2i + µ2, the partition function Z(1,0)

defined in (23) reduces to Gaussian matrix integrals

Z(1,0) = C̃N

∫ µ2

−∞

(
N∏
i=1

dxi

)
△(x)2 e−N

∑N

i=1
1
2
x2i . (28)

It seems almost trivial, but a nontrivial effect arises from the upper bound
of the integration region. Techniques in random matrix theory [15] give a
closed form for the partition function in the double scaling limit (19):

F (s) = − lnZ(1,0) =

∫ ∞

s
(x− s)q(x)2dx, (29)

where q(x) satisfies a Painlevé II differential equation

q′′(x) = xq(x) + 2q(x)3 (30)
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with the boundary condition

q(x) → Ai(x) (x→ +∞). (31)

Such a solution is unique and known as the Hastings-McLeod solution [16].
Since eq. (19) indicates that the string coupling constant gs ∼ 1/N is

proportional to s−3/2, the region of s≫ 1 (0 < s≪ 1) describes the weakly
(strongly) coupled IIA strings.

4.2. Weak coupling expansion

The partition function is given by the Fredholm determinant of the Airy
kernel [15]

Z(1,0) = Det(1− K̂Ai|[s,∞)), (32)

where the operator K̂Ai|[s,∞) can be represented as the integration kernel
on the interval [s,∞):

KAi(x, y) ≡
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
. (33)

From the above fact, it turns out that the weak coupling expansion (large-s
expansion) of the free energy is expressed as an instanton sum [4]

F = − lnZ(1,0) =
∞∑
k=1

Fk−inst. (34)

with

Fk−inst. =
1

k

∫ ∞

s
dt1 . . . dtkKAi(t1, t2)KAi(t2, t3) · · ·KAi(tk, t1) (35)

∼ 1

k

(
1

16πs3/2
e−

4
3
s3/2

)k [
1 + a

(k)
1 s−3/2 + a

(k)
2 s−3 + · · ·

]
.

Some of the coefficients are

a
(1)
1 = −35

24
, a

(1)
2 =

3745

1152
, a

(1)
3 = −805805

82944
, · · ·

a
(2)
1 = −35

12
, a

(2)
2 =

619

72
, a

(2)
3 = −592117

20736
, · · ·

a
(3)
1 = −35

8
, a

(3)
2 =

2059

128
, a

(3)
3 = −184591

3072
, · · ·

a
(4)
1 = −35

6
, a

(4)
2 =

3701

144
, a

(4)
3 = −1112077

10368
, · · · . (36)

The contribution to the free energy has no perturbative part and starts
from nonperturbative effects of the instanton action 4

3s
3/2 ∝ N and its
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fluctuations expanded by s−3/2 ∝ N−1. It seems plausible that the non-
perturbative contributions are provided by D-brane like objects. The order
parameter of the SUSY breaking (with the wave function renormalization

factor N4/3), N4/3
⟨

1
N tr(iB)

⟩(1,0)
= −F ′(s), remains nonzero, implying

that the target-space SUSY in the two-dimensional IIA theory is sponta-
neously broken by D-brane like objects. Corresponding Nambu-Goldstone
fermions are identified with 1

N trψ̄ and 1
N trψ associated with the breaking

of Q and Q̄, respectively [3].

4.3. Strong coupling expansion

The Taylor series expansion of (29) around s = 0 is

F (s) = 0.0311059853− 0.0690913807s+ 0.0673670913s2

−0.0361399144s3 + · · · , (37)

which gives strong coupling expansion of the IIA superstring theory. The
strong coupling limit is regular and finite. In particular, the expression is
smooth around s = 0 and there is no obstruction to be continued to the
s < 0 region (i.e. µ2 < 2), whereas in section 2. we had seen the third order
phase transition across the point µ2 = 2 in the planar limit. Thus, the
singularity in the planar limit becomes smeared out in the double scaling
limit. 5 In the string-theory perspective, singular behavior at the string
tree level is smoothed out by quantum effects. Similar phenomenon can be
seen in the unitary one-matrix model [17].

In the region of s < 0, the free energy has a perturbative series in
(−s)−3 ∝ N−2, which seems to allow an interpretation as non-SUSY (type
0) string theory. Thus, we can see that the matrix model describes both
of the IIA superstrings and type 0 strings in a unified manner at least
concerning the free energy.

5. Summary and Discussion

We have computed planar correlation functions in the double-well SUSY
matrix model, and discussed its correspondence to two-dimensional type
IIA superstring theory on (R−,R+) background. This is an interesting ex-
ample of matrix models for superstrings with target-space SUSY, which al-
lows explicit calculation of various amplitudes of observables not restricted
to those protected by SUSY.

It is interesting to examine the correspondence at deeper level, for in-
stance in higher genus or higher point amplitudes and in amplitudes con-
taining special massive operators. It is also important to discuss the corre-
spondence in the off-shell formulation such as the hybrid formalism [18].

5From a physical viewpoint, it is considered that the free energy in the ν+ = ν− = 1/2
sector for µ2 > 2 smoothly connects to the free energy for µ2 < 2 in the double scaling
limit. Due to (24), the former is essentially equal to (29) except an unimportant additive
term.
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Next, we have explicitly presented the full nonperturbative expression
of the matrix-model free energy in a closed form. The result in the weakly
coupled regime shows that the SUSY is spontaneously broken by nonpertur-
bative effects due to instantons. In particular, the instanton effects survive
in the double scaling limit, which implies that SUSY breaking takes place
by nonperturbative dynamics in the target space of the type IIA super-
string theory. It is interesting to reproduce the instanton contributions
from dynamics of D-branes in the type IIA theory.

The free energy in the strongly coupled limit is smooth, which means
that the singular behavior of the third order phase transition in the planar
limit (at the string tree level) becomes smeared out in the double scaling
limit (including quantum effects in the IIA strings). The regularity at
s = 0 might suggest the existence of an S-dual theory, and the region
s < 0 seems to describe a non-SUSY (type 0) string theory. It would be
intriguing to identify such S-dual theory and to understand the moduli
space of noncritical string theories given by the matrix model.
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