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Abstract

Conformal symmetry properties of pointlike scalar and Dirac particles (Higgs
boson and all leptons) in Riemannian spacetimes in the presence of electromag-
netic interactions are considered. A Hermitian form of the Klein-Gordon equation
for a pointlike scalar particle in an arbitrary n-dimensional Riemannian spacetime
is obtained. New conformal symmetries of initial and Hermitian forms of this
equation are ascertained. In the above spacetime, general Hamiltonians in the
generalized Feshbach-Villars and Foldy-Wouthuysen representations are derived.
The conformal-like transformation conserving these Hamiltonians is found. Cor-
responding conformal symmetries of a Dirac particle are determined. It is proven
that all conformal symmetries remain unchanged by an inclusion of electromag-
netic interactions.

1. Introduction

A determination of symmetry properties of elementary particles is one of
the most important problems of contemporary particle physics. Symme-
tries of basic relativistic wave equations describing pointlike particles with
spin 0 (Higgs boson) and 1/2 (all leptons) retain an important place among
these properties. Intensive studies of such symmetries have been started
fifty years ago from the seminal work by Penrose [1]. He has discovered the
conformal invariance of the covariant Klein-Gordon (KG) equation [2] for a
massless scalar particle in a Riemannian spacetime and has supplemented
this equation with a term describing a nonminimal coupling to the scalar
curvature. Chernikov and Tagirov [3] have involved the case of a nonzero
mass and n-dimensional Riemannian spacetime. The inclusion of the ad-
ditional Penrose-Chernikov-Tagirov (PCT) term has been argued for both
massive and massless particles [3]. Accioly and Blas [4] have performed the
exact Foldy-Wouthuysen (FW) transformation for a massive spin-0 particle
in static spacetimes and have found new telling arguments in favor of the
predicted coupling to the scalar curvature. A derivation of the relativistic
FW Hamiltonian is very important for a comparison of gravitational (and
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inertial) effects in classical and quantum gravity because the FW repre-
sentation restores Schrödinger-like forms of Hamiltonians and equations of
motion. These forms are convenient for finding a semiclassical approxi-
mation and a classical limit of relativistic quantum mechanics (see Refs.
[5, 6, 7] and references therein).

However, the transformation method used in Ref. [4] is applicable nei-
ther to massless particles nor to nonstatic spacetimes. To find a specific
manifestation of the conformal invariance in the FW representation which
takes place just for massless particles, the generalized Feshbach-Villars
(GFV) transformation [8] applicable for such particles has been performed
[9]. The subsequent relativistic FW transformations has made it possible
to derive the FW Hamiltonians for the both massive and massless scalar
particles in general noninertial frames and stationary gravitational fields.
The new manifestation of the conformal invariance for massless particles
consisting in the conservation of the FW Hamiltonian and the FW wave
function has been discovered. New exact FW Hamiltonians have been ob-
tained for both massive and massless scalar particles in general static space-
times and in frames rotating in the Kerr field approximated by a spatially
isotropic metric. The high precision expression for the FW Hamiltonian has
been derived in the general case. It has been also shown that conformal
transformations change only such terms in the FW Hamiltonians which are
proportional to the particle mass m.

In the present work, we consider the much more general problem of
scalar and Dirac particles in arbitrary gravitational (noninertial) and elec-
tromagnetic fields and find (on a quantum-mechanical level) new symmetry
properties relative to conformal transformations not only in the FW repre-
sentation but also in initial representations. These properties are attributed
to all known pointlike scalar and Dirac particles (Higgs boson and leptons)
and also to the hypothetic pseudoscalar axion.

We denote world and spatial indices by Greek and Latin letters, respec-
tively. The signature is (+ − −−), the Ricci scalar curvature is defined
by R = gµνRµν = gµνRα

µαν , where R
α
µβν = ∂βΓ

α
µν − . . . is the Riemann

curvature tensor. We use the system of units ~ = 1, c = 1.

2. Hermitian form of the Klein-Gordon equation and con-
formal symmetry for a pointlike scalar particle

The covariant KG equation with the additional PCT term [1, 3] describing
a scalar particle in a n-dimensional Riemannian spacetime is given by

(�+m2 − λR)ψ = 0, � ≡ 1√
−g

∂µ
√
−ggµν∂ν . (1)

Minimal (zero) coupling corresponds to λ = 0, while the PCT coupling is
defined by λ = (n − 2)/[4(n − 1)] [3]. The sign of the Penrose-Chernikov-
Tagirov term depends on the definition of R. For noninertial (accelerated
and rotating) frames, the spacetime is flat and R = 0.

For a massless particle, the conformal transformation

g̃µν = O−2gµν (2)
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conserves the form of Eq. (1) but changes the wave function and the oper-
ators acting on it [1, 3]:

�− λR = O−n+2
2 (�̃− λR̃)O

n−2
2 , ψ̃ = O

n−2
2 ψ. (3)

To specify symmetry properties of the initial KG equation (1), it is
instructive to present it in the Hermitian form. Amazingly, this can be
achieved with the simple nonunitary transformation

ψ = f−1Φ, f =

√
g00

√
−g, g = det gµν . (4)

Since g̃ = O−2ng, Φ is invariant relative to the conformal transformation
(2). After the transformation (4), we multiply the obtained equation by
the factor f/g00 and come to the Hermitian form of the KG equation [10]:(

1

f
∂µ

√
−ggµν∂ν

1

f
+
m2

g00
− λR

g00

)
Φ = 0. (5)

The use of Eqs. (2)–(4) shows that Eq. (5) is conformally invariant for
a massless particle. However, it is not conformally invariant for a massive
one. To determine its conformal symmetry in the latter case, it is sufficient
to find a physical quantity which substitution for m restores the conformal
invariance of Eq. (5). For this purpose, we can use the quantity m′ which
is equal to m in the initial spacetime and takes the form

m̃′ = Om′ (6)

after the conformal transformation (2). The equation obtained from Eq.
(5) with the substitution of m′ for m,(

1

f
∂µ

√
−ggµν∂ν

1

f
+
m′2

g00
− λR

g00

)
Φ = 0, (7)

is conformally invariant. While this equation does not describe a real par-
ticle and is not equivalent to Eq. (5), finding the appropriate substitution
(6) determines the conformal symmetry of the suitable equation (5). The
determination of new symmetry property for massive particles is rather im-
portant because the only discovered pointlike scalar particle, Higgs boson,
is massive.

Thus, we can conclude that Eq. (5) is not changed by the conformal-like
transformation

g̃µν = O−2gµν , m→ m′, m̃′ = Om′. (8)

In the general case, we can substitute any quantity satisfying Eq. (6) for
m into Eq. (5).
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We can now state the conformal symmetry of the initial KG equation
(1). The substitution of m′ for m makes the changed equation to be con-
formally invariant with the following properties:

�+m′2 − λR = O−n+2
2 (�̃+ m̃′2 − λR̃)O

n−2
2 , ψ̃ = O

n−2
2 ψ. (9)

These properties establish the conformal symmetry of the covariant KG
equation (1) and the specific form of its invariance relative to the conformal-
like transformation (8).

The method of the FW transformation used in Ref. [9] is applicable
to nonstationary spacetimes. However, only the stationary case has been
considered in this work. To make a more general investigation of symmetry
properties in the FW representation, we need to present Eq. (5) in another
(equivalent) form.

Let us introduce the following denotations:

Γi =
√
−gg0i, Gij = gij − g0ig0j

g00
. (10)

Lengthy but straightforward calculations bring Eq. (5) to the form [10][
(∂0 +Υ)2 + ∂i

Gij

g00
∂j +

m2

g00
+ Λ

]
Φ = 0, (11)

where
Υ = 1

2f

{
∂i,Γ

i
}

1
f = 1

2

{
∂i,

g0i

g00

}
,

Λ = −f,0 ,0

f −
(

g0i

g00

)
,i

f,0
f − 2 g0i

g00
f,0 ,i

f −
(

g0i

g00

)
,0

f,i
f

−1
2

(
g0i

g00

)
,0 ,i

− 1
2f2

(
g0i

g00

)
,i
Γj
,j −

g0i

2f2g00
Γj
,j ,i

+ 1
4f2

(
Γi
,i

)2
−
(
Gij

g00

)
,i

f,j
f − Gij

g00
f,i ,j
f − λR

g00
.

(12)

This form of the KG equation is also Hermitian and the wave function
is not changed as compared with Eq. (7). The replacement of m with
m′ makes Eq. (11) to be conformally invariant. Therefore, Eq. (11) is
invariant relative to the conformal-like transformation (8).

3. Conformal symmetries of Hamiltonians

To fulfil the successive GFV and Foldy-Wouthyusen transformations, we
use the method developed in Ref. [8] and applied to the covariant KG
equation in Ref. [9]. The original Feshbach-Villars method does not work
for massless particles while its generalization [8] makes it possible to extend
the method on such particles.

We introduce two new functions, ϕ and χ, as follows [8, 9]:

Φ = ϕ+ χ, i (∂0 +Υ)Φ = N(ϕ− χ), (13)
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where N is an arbitrary nonzero real parameter. For the Feshbach-Villars
transformation, it is definite and equal to the particle mass m. These func-
tions form the two-component wave function in the GFV representation,

Ψ =

(
ϕ
χ

)
. Equations (11) and (13) result in (cf. Ref. [9])

i∂Ψ∂t = HΨ, H = ρ3
N2+T
2N +iρ2

−N2+T
2N − iΥ,

T = ∂i
Gij

g00
∂j +

m2

g00
+ Λ,

(14)

where H is the GFV Hamiltonian and ρi (i = 1, 2, 3) are the Pauli matrices.
Equation (14) is exact.

For a massless particle, this Hamiltonian is not changed by the confor-
mal transformation (2). In the general case, it is invariant relative to the
conformal-like transformation (8).

The general methods developed in Refs. [7, 8, 6] allow us to perform
the FW transformation of the Hamiltonian (14) for a relativistic particle in
external fields. These methods are iterative. The initial Hamiltonian can
be presented in the general form

H = ρ3M+ E +O, ρ3M = Mρ3, ρ3E = Eρ3, ρ3O = −Oρ3, (15)

where E and O denote the sums of even (diagonal) and odd (off-diagonal)
operators, respectively. In the considered case, [M,O] = 0,

M =
N2 + T

2N
, E = −iΥ, O = iρ2

−N2 + T

2N
, (16)

and the transformation operator found in Ref. [7] reduces to the form [8, 9]

U =
ϵ+N + ρ1(ϵ−N)

2
√
ϵN

, ϵ =
√

M2 +O2 =
√
T . (17)

This operator is ρ3-pseudounitary (U † = ρ3U
−1ρ3).

It is important that the Hamiltonian obtained as a result of this trans-
formation does not depend on N [8]:

H′ = ρ3ϵ+ E ′ +O′, ρ3E ′ = E ′ρ3, ρ3O′ = −O′ρ3,
E ′ = −iΥ+ 1

2
√
ϵ
[
√
ϵ, [

√
ϵ,F ]] 1√

ϵ
,

O′ =ρ1
1

2
√
ϵ
[ϵ,F ] 1√

ϵ
, F = −i∂0 − iΥ.

(18)

This shows a self-consistency of the used transformation method. The exact
intermediate Hamiltonian (18) describes massive and massless particles and
is not changed by the conformal-like transformation (8).

Next transformation [8] eliminates residual odd terms and leads to the
final form of the approximate relativistic FW Hamiltonian:

HFW = ρ3ϵ− iΥ− 1
2
√
ϵ
[
√
ϵ, [

√
ϵ, (i∂0 + iΥ)]] 1√

ϵ
. (19)
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This final Hamiltonian is also invariant relative to the conformal-like trans-
formation (8). As a rule, the relativistic FW Hamiltonian is expanded in
powers of the Planck constant and it is useful when the de Broglie wave-
length is much smaller than the characteristic distance [7]. In such a Hamil-
tonian, terms proportional to the zero and first powers of the Planck con-
stant are determined exactly while less order terms are not specified (see
Ref. [11]). As a result, the last term in Eq. (19) can be omitted if it is
proportional to the second or higher orders of ~.

4. Inclusion of electromagnetic interactions

Fortunately, an inclusion of electromagnetic interactions does not leads to
any significant complication of the above derivations. The initial covariant
KG equation takes the form[

gµν(∇µ + ieAµ)(∇ν + ieAν) +m2 − λR
]
ψ = 0, (20)

where ∇µ is the covariant derivative and Aµ is the electromagnetic field
potential. This equation is equivalent to the following one:(

1√
−g

Dµ
√
−ggµνDν +m2 − λR

)
ψ = 0, (21)

where Dµ = ∂µ+ ieAµ. The nonunitary transformation (4) brings it to the
Hermitian form corresponding to Eq. (5) [10]:(

1

f
Dµ

√
−ggµνDν

1

f
+
m2

g00
− λR

g00

)
Φ = 0. (22)

It is convenient to present this equation in the equivalent form (cf. Eq.
(11)) [10] [

(D0 +Υ′)2 +Di
Gij

g00
Dj +

m2

g00
+ Λ

]
Φ = 0,

Υ′ = 1
2f

{
∂i,Γ

i
}

1
f = 1

2

{
Di,

g0i

g00

}
,

T ′ = Di
Gij

g00
Dj +

m2

g00
+ Λ,

(23)

where Gij and Λ are defined by Eqs. (10) and (12), respectively.
A repeat of the transformation given above allows us to derive the

Hamiltonian in the GFV representation:

H = ρ3
N2+T ′

2N + ρ2
−N2+T ′

2N − iΥ′ + eA0. (24)

The FW transformation can be fulfilled with the operator (17) where

ϵ =
√
T ′. The transformed operator H′ is independent of N . The final

approximate FW Hamiltonian is given by (ϵ =
√
T ′)

HFW = ρ3ϵ− iΥ′ + eA0 − 1
2
√
ϵ
[
√
ϵ, [

√
ϵ, (i∂0 + iΥ′ − eA0)]]

1√
ϵ
. (25)
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The last term in Eq. (25) can be omitted if it is proportional to the second
or higher orders of ~ (see previous section).

All Hamiltonians obtained with the inclusion of electromagnetic interac-
tions (H, H′, and HFW ) are invariant relative to the conformal-like trans-
formation (8). The Hamiltonians are conformally invariant for a massless
particle. Thus, this inclusion does not change the conformal symmetries of
the Hamiltonians.

5. Conformal symmetry properties of Dirac particles

It is easier to determine the conformal symmetry properties of a point-
like Dirac particle. It has been established in Ref. [9] that the Dirac and
FW Hamiltonians for a massless particle and the corresponding wave func-
tions are invariant relative to the conformal transformation (2). The initial
covariant Dirac equation is also conformally invariant for such a particle.
The wave function of the massless particle in the conformally transformed
metric (2) acquires the additional factor O3/2 [9].

These results can be extended on massive particles. An analysis of
the general relativistic equation for the Dirac Hamiltonian in arbitrary
Riemannian spacetimes in the presence of an electromagnetic field (Eq.
(2.21) in Ref. [12]) shows that this Hamiltonian is invariant relative to
the conformal-like transformation (8). The FW transformation operator
possesses the same property for both massive and massless particles. As a
result, the FW Hamiltonian is also invariant relative to the conformal-like
transformation in the general case. Finally, we find that the conformal-like
transformation (8) of the covariant Dirac equation results in the following
property of the wave function:

Ψ̃ = O3/2Ψ. (26)

Contrary to the conventional conformal invariance, this property is valid
for any particle.

All properties stated in this section take place in the presence of elec-
tromagnetic interactions.

We can conclude that the previously ascertained similarity between
massless scalar and Dirac particles in Riemannian spacetimes [9] exists for
any pointlike particles and is not violated by electromagnetic interactions.

6. Summary

In the present work, new symmetry properties have been found for funda-
mental pointlike scalar and Dirac particles (Higgs boson and all leptons)
in Riemannian spacetimes. All general results have been obtained in the
presence of electromagnetic interactions. The KG equation for a point-
like scalar particle in an arbitrary n-dimensional Riemannian spacetime
has been brought to the Hermitian form (5). This form is useful to derive
the general Hamiltonians in the GFV and FW representations. The GFV
Hamiltonians (14) and (24) are exact. The corresponding FW Hamiltoni-
ans (19) and (25) are approximate. They are expanded in powers of the
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Planck constant and are useful when the de Broglie wavelength is much
smaller than the characteristic distance. Nevertheless, these Hamiltonians
are rather general. They cover the nonstationary case and can be applied for
a relativistic particle in arbitrarily strong gravitational and inertial fields.
In these Hamiltonians, terms proportional to the zero and first powers of
the Planck constant are determined exactly while less order terms are not
specified.

New conformal symmetries of the initial and Hermitian forms of the KG
equation are ascertained. When the mass is replaced with any quantity m′

satisfying the conformal transformation (6), the changed equations become
conformally invariant. This defines the conformal symmetries of the con-
ventional and Hermitian KG equations. The latter equation as well as the
obtained Hamiltonians in the GFV and FW representations is invariant
relative to the conformal-like transformation (8).

Corresponding conformal symmetries are also determined for both mas-
sive and massless Dirac particles. The Dirac and FW Hamiltonians are
invariant relative to the conformal-like transformation (8). This transfor-
mation also defines the conformal symmetry of the initial Dirac equation
for a massive particle. When m′ defined by Eq. (6) is substituted for m,
the Dirac wave function has the property (26).

It is proven that all conformal symmetries remain unchanged by an in-
clusion of electromagnetic interactions. Thus, the results obtained in the
present study have allowed us to state the new general properties of con-
formal symmetry for pointlike scalar and Dirac particles (Higgs boson and
all leptons) in Riemannian spacetimes in the presence of electromagnetic
interactions.
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