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Abstract

The Analytic Continuation by Duality (ACD) method is used to estimate dis-
persive integrals in low-energy QCD phenomenology and in technicolor models.
The method uses a polynomial approximation of the 1/x function, usually a best-
Lp approximation. There are several sources of error in the ACD estimates which,
along with the oscillatory behavior of the best-Lp approximations, render them
unreliable. The method is unstable, but it is still occasionally used in QCD phe-
nomenology. Here we investigate a modification of the ACD method that has
recently appeared by using a simple model spectrum. The modified ACD uses an
approximation weighted towards the end of the interval, where the subasymptotic
QCD is expected to be more reliable. For the case when only the first few terms
of the Operator Product Expansion (OPE) are known, the modified method fails
to reproduce the results expected for the simple model.

1. Introduction

The Analytic Continuation by Duality (ACD) is a method used to evaluate
dispersive integrals in QCD using the first few terms of the Operator Prod-
uct Expansion (OPE). ACD differs considerably from the usual QCD sum
rules, but nevertheless it is often termed a “finite energy sum rule”. ACD
is a fairly old method [2], used mainly in low-energy QCD phenomenology.

The ACD approximates the kernel of a dispersive integral by a polyno-
mial on the real line, which allows the integration to be performed in the
complex plane. As noted early [3], ACD is an ill-posed problem: small vari-
ations in the input parameters may lead to large variations in the results,
which is discussed in one of our previous contributions [5]. Besides, we have
found the ACD to be unstable and unreliable [4, 8]. The instability seems
to be related to the oscillatory character of the best-Lp polynomial approx-
imations. It is difficult to investigate the reliability of the ACD method,
thus, we have to be content with an analysis of its behavior on simple model
spectra for which the exact value of the esimate is found from a dispersive
integral and compared to the ACD-derived estimate.

Several modifications of the ACD method have been proposed. In one
of the modifications [6] – called ‘simplified’ ACD here – the 1/s kernel is
approximated by truncated Taylor series around the upper cut-off R. That
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simplified method is stable, but (contrary to claims) it yields only a lower
bound for the estimates [7]. We have attempted a version of the ACD with
an asymmetric weighting function used for the polynomial approximation,
but it proved to be less reliable than the original ACD [9]. The ACD
is claimed to require no phenomenological input, but in one of its versions
the locations of the dominant resonances in the spectrum need to be known
[10]. Therefore, if the resonances are not known that method depends on
two new parameters, although the dependence is not necessarily so strong
as to invalidate the entire approach [11].

A new version of of the ACD – called “modified ACD” in this contribu-
tion – introduces a weighting function straight into the dispersive integral
[12] instead of using it only for the polynomial approximation. Mathemat-
ically, this is the most radical departure from the original ACD, which is
the main motivation behind this contribution.

2. Original and Modified ACD Method

Finding the matrix element of a process with the vacuum polarization Π(s)
in the non-perturbative regime may lead to the dispersive integral∫ ∞

s0

1

s
ImF (s)ds,

F (s) being usually a simple function of Π(s). The lower cut-off s0 is the
threshold of the process. However, F (s) can be related to, e. g., a product
of Π(s) and another function, as we will see below.

The function F (s) is analytic in the entire complex plane except on the
branch cut along the real axis from s0 so the Cauchy’s integral formula gives

Re s

Im s

s
0 R

Figure 1: The contour
of integration.

F (t) =
1

2πi

∮
C

F (s)

s− t
ds, (1)

where C is the contour shown in Fig. 1.
The integral consists of two parts [5]:

F (t) =
1

2πi

∮
|s|=R

F (s)

s− t
ds+

1

π

∫ R

s0

ImF (s)

s− t− iε
ds.

(2)
In the limit t → 0 Eq. 2 becomes

F (0) =
1

2πi

∮
|s|=R

F (s)

s
ds+

1

π

∫ R

s0

ImF (s)

s
ds.

(3)

It can be shown that asymptotically F (s) ∼ 1/s so the integral over
the circle |s| = R vanishes as R → +∞. Therefore, in this limit we get the
dispersion relation

F ≡ F (0) =
1

π

∫ +∞

s0

ImF (s)

s
ds. (4)
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In the original ACD, the function F is simply related to the vacuum
polarization Π(s). In the modified ACD we take F (s) = G(s)ρ(s), where
ρ(s) is a real continuous function obeying ρ(0) = 1 while G(s) is simply
related to Π(s). Now instead of (3) we find

G(0) =
1

2πi

∮
|s|=R

G(s)ρ(s)

s
ds+

1

π

∫ R

s0

ImG(s)ρ(s)

s
ds (5)

and instead of (4)

G ≡ G(0) =
1

π

∫ +∞

s0

ImG(s)ρ(s)

s
ds. (6)

In contrast to the approach that leads to the dispersion relation (4), the
ACD method makes the second integral in (3), i. e. in (5) for modified ACD,
vanish. This is achieved by approximating the kernel 1/s by a polynomial.
In the original ACD, the kernel is approximated by

pN (s) =
N∑

n=0

an(N)sn

and we find [5]

F (0) =
1

2πi

∮
|s|=R

[
1

s
− pN (s)

]
F (s) ds+

1

π

∫ R

s0

[
1

s
− pN (s)

]
ImF (s) ds.

(7)
Eq. (7) is exact. We try to make the second integral as small as possible;
it is called “fit error”. The fit error depends on N , on the interval [s0, R]
and on the fit routine. Clearly, the minimization of the second integral in
(5) is more involved as the function ρ(s) is undetermined.

3. Approximation Routine for Modified ACD

The problem of minimization of the fit error is to find the norm that is to be
minimized and to find an appropriate function ρ(s). The approach taken
in [12] is to divide the weight function into two parts: ρ(s) = D1(s)D2(s).
The two parts are actually found employing the ideas that have already
been used within the original ACD. Since the (usually asymptotic) large-s
expansion tends to be better near the upper bound R it makes sense to
require that the function D2(s) and its derivatives vanish at s = R:

dk

dsk
D2(s)

∣∣∣∣
s=R

= 0, k = 0, . . . , N2. (8)

This was the idea of the simplified ACD [6], but in that case there was no
(nontrivial) D1(s) so that version gave only a lower bound of the ACD-
estimates. In fact [7],

D2(s) =
(
1− s

R

)N2+1
. (9)
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The function D1(s) is taken to be the polynomial that minimizes the
weighted L2-norm

||d|| =
[∫ R

s0

[d(s)]2D2(s)ds

]1/2
, (10)

where

d(s) =
D1(s)

s
=

1

s
− pN1(s) =

1

s
−

N1∑
n=0

an(N1, N2)s
n, (11)

With a change of variables x = −ps+ q, where

p =
2

R− s0
, q =

R+ s0
R− s0

the approximation problem is reduced to the minimization of the integral

||d′||2 =
∫ 1

−1

[
1

x− q
−

N1∑
n=0

bn(N1, N2)x
n

]2
(1 + x)N2+1dx, (12)

where ||d′|| differs from the norm ||d|| in (10) only by an overall factor. The
change of variables has rescaled and inverted the interval: s0 corresponds
to +1 and R to −1. There is also an overall factor −p:

1

s
=

−p

x− q
.

It is straightforward to express an through bn [9]:

an =

N∑
k=n

(
k

i

)
(−p)n+1qk−nbk. (13)

Thus the problem is reduced to finding the coefficients bk.
It is known [13] that the polynomials which minimize the integral (12)

are special case of the Jacobi polynomials:

yn(x) = P (0,N2+1)
n (x), n = 0, . . . , N1

and that they are orthogonal with the above weight:∫ 1

−1
ym(x)yn(x)(1 + x)N2+1dx = d2nδmn,

where the constant dn = dn(N2) is obtained by specializing the general
normalization factor for Jacobi polynomials [14]

d2n =
2N2+2

2n+N2 + 2
.
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Hence we fit the function 1/(x− q) to truncated Fourier-Jacobi series:

1

x− q
≈

N1∑
n=0

cnyn(x),

where cn are the Fourier-Jacobi coefficients. We have studied the general
case of approximation with Jacobi polynomials in our previous contribution
[9] so we need only to specialize the results to the present case. The Fourier-
Jacobi coefficients are

cn =
1

d2n

∫ 1

−1

yn(x)(1 + x)N2+1

x− q
dx, q > 1. (14)

The integral in (14) for Jacobi polynomials P
(0,N2+1)
n (x) can be expressed

in terms of the Jacobi functions of the second kind [13]:

Q(0,N2+1)
n (q) =

1

2(q + 1)N2+1

∫ 1

−1

P
(0,N2+1)
n (x)(1 + x)N2+1

q − x
dx. (15)

Eventually the coefficients are found to be

cn(q) = −2
Q

(0,N2+1)
n (q)

d2n
(q + 1)N2+1, n = 0, . . . , N1. (16)

Jacobi functions of the second kind are easily computable since they
are corecursive with the Jacobi polynomials. It is necessary to find Q0 and
Q1 to initialize the recursive procedure. Actually, the only non-polynomial
function that appears in Qn is the one that is present in Q0 and it is
logarithmic [15]. In our case, the function is

ln
1 + q

1− q
= ln

R

s0
.

However, In most realistic applications N1 ≤ 2 so that it is not difficult to
obtain the fits to 1/s directly from (10) and (11).

Finally, we find the function ρ(s):

ρ(s) = D1(s)D2(s) =

[
1−

N1∑
n=0

an(N1, N2)s
n+1

](
1− s

R

)N2+1
. (17)

The function ρ(s) is a polynomial of order N1 +N2 + 2:

ρ(s) =

N1+N2+2∑
n=0

An(N1, N2)s
n, (18)

which has been fully determined and enables us to derive the ACD estimate.
Of course, not all of the An’s are independent (e. g. A0 = 1 for all N1, N2);
in fact, only N1 + 1 An’s can be considered independent.



122 S. R. Ignjatović

4. Derivation of the ACD Estimate

Let us assume that the large-s expansion

G(s) =

M∑
m=1

hm(s)

sm
+O

(
1

sM+1

)
(19)

is valid around the circle |s| = R. The expansion (19) may be OPE, which
is an asymptotic series, the large-momentum expansion of a perturbative
series or an exactly known vacuum polarization, which may be convergent
series (the model considered in Sec. 5 belonging to the last case). For
the subasymptotic QCD only a few terms of the OPE are known, thus in
realistic applications M ≤ 4.

Returning to the main ACD formula (5) the ACD estimate reeds

G(0) =
1

2πi

∮
|s|=R

G(s)ρ(s)

s
ds+∆fit, (20)

where ∆fit is the fit error.
The truncation of the series (19) introduces a further error and the

neglect of the momentum dependence of the large-momentum expansion
coefficients hm (which is not always necessary, however) an additional error
[5]. We do not consider these two errors here since the fit error is the only
error for the model of Sec. 5. The only non-zero contributions to the first
integral in (5) come from the simple poles so that

GACD =

min(N1+N2+2,M−1)∑
n=0

ĥn+1An(N1, N2). (21)

If the spectral function is known exactly, the dispersion relation gives a
reliable estimate of G so the comparison to GACD will determine if the
ACD estimate is reliable.

Apparently, the modified ACD introduces two integer parameters N1
and N2 as opposed to the original ACD which has only one (the order of
the fit polynomial N). However, in most early applications M ≤ 4 so that
looking at (21) we can restrict N1 +N2 to just 0 or 1. Therefore, there are
essentially only three possibilities: 1) N1 = N2 = 0, 2) N1 = 0, N2 = 1 and
3) N1 = 1, N2 = 0. To be fair, one has to note that the actual application
in [12] used an expansion with M = 10, which allowed to choose among
many more N1, N2.

5. ACD Estimates for Model Spectra

In order to investigate the reliability of the ACD-derived results we use
a simple model function G(s) for which the dispersive integral (6) can be
evaluated exactly. Our model contains two infinitely sharp (δ-function)
resonances – a single resonance of mass mV in the vector channel and a
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single resonance of mass mA in the axial channel. The parameters of the
resonances are constrained by the condition that the spectra saturate the
first and second Weinberg sum rules. We find

ImG(s) = −π[f2
V δ(s−m2

V )− f2
Aδ(s−m2

A)],

G(s) =
f2
V

s−m2
V + iϵ

−
f2
A

s−m2
A + iϵ

.

Clearly,

G = G(0) =
f2
A

m2
A

−
f2
V

m2
V

(22)

provided s0 < mV ,mA < R. The Weinberg sum rules give [5]

G = (1 + r)
f2

m2
V

, (23)

where r = m2
V /m

2
A (for QCD r ≈ 0.4). The large-momentum expansion is

G(s) =
+∞∑
n=0

f2
V m

2n
V − f2

Am
2n
A

sn+1
=

+∞∑
n=0

f2m2n
V

sn+1

1− r1−n

1− r
.

Interestingly, in this model the term with 1/s2 is absent.
It is possible to use the more realistic model with finite-width reso-

nances. However, our previous analysis indicated that the model yields
quallitatively the same results hence we have not used it in our recent
contributions.

In general, only a few terms of the OPE are known [1, 2] so in most
applications M ≤ 4, although there are exceptions. In order to check
the sensitivity of the estimates to the location of the resonances we have
calculated GACD not only for its QCD value r = 0.4, but also for r = 0.3
and r = 0.5. This is equivalent to varying the mass mA of the axial channel
resonance with the mass mV of the vector channel resonance fixed. The
results are shown in Table 1.

We have used only the lowest-order approximations with N1 + N2 =
0, 1. It is clear not only that the results are unsatisfactory, but also that
increasing the order of the approximation made the results worse! The
computationally much more demanding cases withN1+N2 = 8 (or so) could
perhaps yield better results and will be the subject of further investigation.

Another negative surprise was the strong dependence on the lower cut-
off s0 (not shown on the table), much more severe than in our previous
contribution [9]. That dependence is a known problem with the ACD [16, 8]
and it is particularly serious for problems with no natural lower cut-off (such
as the two-pion threshold) as was the case for the technicolor.
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Table 1: GACD in units of its exact value (23) for 3 values of the dimen-
sionless parameter r. The cutoffs are s0 = 0.2m2

V and R = 5m2
V .

r N1 = N2 = 0 N1 = 0, N2 = 1 N1 = 1, N2 = 0

0.3 0.266 −0.042 −0.489
0.4 0.364 0.077 −0.340
0.5 0.405 0.158 −0.200

6. Conclusions

The ACD is an old method of non-perturbative QCD with several known
shortcomings. The modified ACD investigated in this contribution repre-
sents a major change from a mathematical point of view. It changes not
only the fit routine of the polynomial approximation – which is crucial for
the ACD, but also the way the ACD estimates are derived. The modified
ACD may also be regarded as a generalization of the ACD method because
it introduces two undetermined functions thus opening up new possibilities
in the development of the method. In this contribution we have investi-
gated only the concrete application of this concept proposed by the authors
of the modified ACD.

The modified ACD weights the polynomial approximation towards the
upper cut-off, which is expected to improve the estimates from a physical
point of view, namely, the subasymptotic QCD improves with increasing
momenta. Since the results are poor, it appears that the weighting is too
severe, although we have checked the reliability only for the lowest-order
approximations.

The dependence of the ACD-derived estimates on the lower cut-off is
also a major problem in the modified ACD, even more severe than in the
original ACD.

Hence the modified ACD does not appear to improve the method, but
further investigation of this interesting approach is necessary. Firstly, one
has to check the reliability and stability of the method for considerably
higher orders of the approximation. Secondly, the modification of the
method the ACD estimates are derived increases the freedom of choice
of the approximation methods and should be further explored.
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