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Abstract

We present a qualitatively new mechanism for dynamical spontaneous break-
down of supersymmetry in supergravity. Specifically, we construct a modified
formulation of standard minimal N = 1 supergravity as well as of anti-de Sitter
supergravity in terms of a non-Riemannian spacetime volume form (generally co-
variant integration measure density). The new supergravity formalism naturally
triggers the appearance of a dynamically generated cosmological constant as an
arbitrary integration constant which signifies spontaneous (dynamical) breaking of
supersymmetry. Applying the new formalism to anti-de Sitter supergravity allows
us to appropriately choose the above mentioned arbitrary integration constant
so as to obtain simultaneously a very small effective observable cosmological con-
stant as well as a large physical gravitino mass as required by modern cosmological
scenarios for slowly expanding universe of the present epoch.

1. Introduction

Supersymmetry is a fundamental extended space-time symmetry of Na-
ture, believed to manifest itself at ultra-high energies, which is unifying
bosons (integer-spin particles) and fermions (half-integer spin particles).
Among the prinicipal theoretical highlights of supersymmetry one should
mention: drastically reducing the number of apriori independent physical
parameters; drastically reducing (in some cases even eliminating) ultra-
violet divergencies in quantum field theories; providing possible solution
of the hierachy/fine-tuning problems in high-energy elementary particles
phenomenology; naturally appearing within the context of modern string
theory. For a very short list of basic references see [1, 2, 3, 4]. Apart
from elementary particle physics and cosmology, supersymmetry plays an
increasingly active role both as conceptional paradigm and as important
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mathematical tool in various other principal areas of theoretical physics
and mathematics such as theoretical condensed matter [5] as well as in the
modern theory of integrable (soliton) systems [6].

Unfortunately, supersymmetry is not an exact symmetry of Nature.
Otherwise, we would observe bosonic (integer-spin) counterparts with the
same masses of the fundamental fermionic particles – protons, electrons,
etc.. Therefore, supersymmetry must be spontaneously broken [1, 2].

Under spontaneous symmetry breakdown the symmetry-generating charges
in the respective (quantum) field theories are conserved whereas the ground
states (“vacuums”) are not invariant under the symmetry transformations.
Spontaneous symmetry breakdown is always accompanied by the appear-
ance of certain mass (energy) scale of the breakdown. Typically, the scale of
spontaneous symmetry breaking is generated by the appearance of non-zero
vacuum expectation values of certain (quantum) fields non-trivially trans-
forming under the pertinent symmetry group. The basic example is the
Brout-Englert-Higgs mechanism in the Standard Model of particle physics
(see e.g. Ref.[7]).

In minimal supergravity (supersymmetric generalizations of ordinary
Einstein general relativity without interactions with other matter fields –
for a recent account of modern supergravity theories and notations, see
Ref.[4]) there is another way to spontaneously break supersymmetry (su-
persymmetric Brout-Englert-Higgs effect) – via dynamical generation of
non-zero cosmological constant [8, 9]. In what follows we describe a new
theoretical framework where the above scenario is explicitly realized in a
natural way.

The main idea of our current approach comes from Refs.[10] (for recent
developments, see Refs.[11]), where some of us have proposed a new class
of gravity-matter theories based on the idea that the action integral may
contain several terms built with different spacetime volume-forms (gener-
ally covariant integration measure densities). Namely, apart from terms
built with the standard Riemannian volume-form given in terms of the
square-root of the determinant of the pertinent Riemannian metric, we
may have additional term(s) constructed with one or more [13] alternative
non-Riemannian volume form(s) on the spacetime manifold in terms of one
or more auxiliary antisymmetric tensor gauge field(s) of maximal rank com-
pletely independent of the metric. The latter formalism has lead to various
new interesting results in all types of known generally coordinate-invariant
theories:

• (i) D = 4-dimensional models of gravity and matter fields containing
one term with an alternative non-Riemannian integration measure ap-
pear to be promising candidates for resolution of the dark energy and
dark matter problems, the fifth force problem, and a natural mecha-
nism for spontaneous breakdown of global Weyl-scale symmetry [10]-
[11].

• (ii) Study of reparametrization invariant theories of extended objects
(strings and branes) based on employing of a modified non-Riemannian
world-sheet/world-volume integration measure [12] leads to dynami-
cally induced variable string/brane tension and to simple string models



A New Venue of Spontaneous Supersymmetry Breaking in Supergravity 107

of non-abelian confinement.

• (iii) In Refs.[13] a new class of extended gravity-matter models is con-
structed, built in terms of two independent non-Riemannian volume-
forms on the underlying spacetime manifold, producing interesting
cosmological implications relating inflationary and today’s slowly ac-
celerating phases of the universe.

The principal results described in the next sections are as follows:
(a) First, we briefly outline the main properties of a general class of

gravity-matter models with one non-Riemannian volume-form term. Specif-
ically we provide a consistent canonical Hamiltonian analysis of the latter
models exhibiting the physical meaning of the pertinent auxiliary fields
which are absent in the standard formulation of gravity-matter actions in
terms of the ordinary Riemannian spacetime volume-form (see also second
Ref.[13]).

(b) The new non-Riemannian volume-form formalism is then applied
to minimal N = 1 supergravity in D = 4-dimensional spacetime. This
naturally triggers the appearance of a dynamically generated cosmological
constant as an arbitrary integration constant, which signifies a new explicit
mechanism of spontaneous (dynamical) breaking of supersymmetry.

(c) Applying the same formalism to anti-de Sitter supergravity allows us
to appropriately choose the above mentioned arbitrary integration constant
so as to obtain simultaneously a very small effective observable cosmological
constant as well as a very large physical gravitino mass.

2. Gravity-Matter Models With a Non-Riemannian Space-
time Volume-Form

Let us consider the following non-standard gravity-matter system of a gen-
eral form whose action is a linear combination (with c1,2 – some constants)
of one term with an alternative non-Riemannian spacetime volume-form
and another one with the standard Riemannian one:

S = c1

∫
dDxΦ(B)

[
L(1) +Φ(H)

]
+ c2

∫
dDx

√
−g L(2) (1)

Here the following notations are used:

• The alternative volume element in the first term of (1) is given by the
following non-Riemannian integration measure density:

Φ(B) ≡ 1

(D − 1)!
εµ1...µD ∂µ1Bµ2...µD , (2)

where Bµ1...µD−1 is an auxiliary rank (D − 1) antisymmetric tensor
gauge field. The latter can also be parametrized in terms of D auxil-
iary scalar fields Bµ1...µD−1 = 1

DεIJ1...JD−1
ϕI∂µ1ϕ

J1 . . . ∂µD−1ϕ
JD−1 , so

that: Φ(B) = 1
D!ε

µ1...µD εI1...ID∂µ1ϕ
I1 . . . ∂µDϕ

ID , but we will stick to
the definition (2). The volume element in the second term of (1) is
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given by the standard Riemannian integration measure density
√
−g,

where g ≡ det ∥gµν∥ is the determinant of the corresponding Rieman-
nian metric gµν .

• The Lagrangians L(1,2) ≡ 1
2κ2R+L

(1,2)
matter include both standard Einstein-

Hilbert gravity action as well as matter/gauge-field parts. Here R =
gµνRµν(Γ) is the scalar curvature within the first-order (Palatini) for-
malism and Rµν(Γ) is the Ricci tensor in terms of the independent
affine connection Γµ

λν .

• In general, the second Lagrangian L(2) might contain also higher cur-
vature terms like R2 (see e.g. first Ref.[13]).

• In the first modified-measure term of the action (1) we have included
an additional term containing the field-strength Φ(H) of another aux-
iliary rank (D − 1) antisymmetric tensor gauge field Hµ1...µD−1 :

Φ(H) ≡ 1

(D − 1)!
εµ1...µD ∂µ1Hµ2...µD , (3)

whose presence is crucial for non-triviality of the model. Such term
would be purely topological (total divergence) one if included in stan-
dard Riemannian integration measure action like the second term with
L(2) on the r.h.s. of (1).

The auxiliary gauge fields Bµ1...µD−1 and Hµ1...µD−1 turn out to be pure-
gauge (non-propagating) degrees of freedom, however, both are leaving rem-
nants which play crucial role in the sequel (see also next Section). Namely,
varying (1) w.r.t. H and B tensor gauge fields we get:

∂µ

(Φ(B)√
−g

)
= 0 → Φ(B)√

−g
≡ χ = const , (4)

∂µ

[
L(1) +Φ(H)

]
= 0 → L(1) +Φ(H) =M = const , (5)

where χ (ratio of the two measure densities) andM are arbitrary integration
constants. The meaning of χ and M from the point of view of canonical
Hamiltonian formalism is elucidated in the next section.

Now, varying (1) w.r.t. gµν and taking into account (4)–(5) we arrive
at the following effective Einstein equations (in the first-order formalism):

Rµν(Γ)−
1

2
gµνR+ Λeffgµν = κ2T eff

µν , (6)

with effective energy-momentum tensor:

T eff
µν = gµνL

eff
matter−2

∂Leff
matter

∂gµν
, Leff

matter ≡
1

c1χ+ c2

[
c1L

(1)
matter+c2L

(2)
matter

]
,

(7)
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and with a dynamically generated effective cosmological constant Λeff thanks
to the non-zero integration constants M, χ:

Λeff = κ2 (c1χ+ c2)
−1 χM . (8)

3. Canonical Hamiltonian Treatment

In what follows we restrict our attention to D = 4-dimensional spacetime.
For convenience we will introduce the following short-hand notations for
the field-strengths (2) and (3) of the auxiliary 3-index antisymmetric gauge
fields Bµνλ, Hµνλ (the dot indicating time-derivative):

Φ(B) =
.
B +∂iB

i , B =
1

3!
εijkBijk , Bi = −1

2
εijkB0jk , (9)

Φ(H) =
.
H +∂iH

i , H =
1

3!
εijkHijk , H i = −1

2
εijkH0jk , (10)

According to the general form of the action (1) (for simplicity we set here
c1,2 = 1) the pertinent canonically conjugated momenta read:

πB = L(1)(u,
.
u) +

1√
−g

(
.
H +∂iH

i) ,

πH =
1√
−g

(
.
B +∂iB

i) , (11)

where (u,
.
u) collectively denote the set of the basic gravity-matter canonical

variables ((u) = (gµν , matter fields)) and their velocities, and:

πBi = 0 , πHi = 0 . (12)

Eqs.(12) imply that Bi,H i will in fact appear as Lagrange multipliers for
certain first-class Hamiltonian constraints (see Eqs.(16) below).

Using (11), for the canonical momenta conjugated to the basic gravity-
matter canonical variables we obtain:

pu = πH
∂

∂
.
u

(√
−gL(1)(u,

.
u)
)
+

∂

∂
.
u

(√
−gL(2)(u,

.
u)
)
. (13)

Now, from (11) and (13) we obtain the velocities
.
H=

.
H (u, pu, πH , πB),

.
B=

.
B (u, πH) and

.
u=

.
u (u, pu, πH , πB) as functions of the respective canon-

ically conjugate momenta, wherefrom the canonical Hamiltonian corre-
sponding to (1):

H = pu
.
u +πB

.
B +πH

.
H

−(
.
B +∂iB

i)
[
L(1)(u,

.
u) +

1√
−g

(
.
H +∂iH

i)
]
−

√
−gL(2)(u,

.
u) (14)
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acquires the following form as function of the canonically conjugated vari-
ables (here

.
u=

.
u (u, pu, πH , , πB):

H = pu
.
u −πH

√
−gL(1)(u,

.
u)−

√
−gL(2)(u,

.
u)

+
√
−gπHπB − ∂iB

iπB − ∂iH
iπH . (15)

From (15) we deduce that indeed Bi,H i are Lagrange multipliers for the
first-class Hamiltonian constraints:

πH = χ = const , πB =M = const , (16)

which (in virtue of (11)) are the canonical Hamiltonian counterparts of
Lagrangian constraint equations of motion (4)-(5).

We conclude that the canonical Hamiltonian treatment of (1) reveals
the meaning of the auxiliary 3-index antisymmetric tensor gauge fields
Bµνλ, Hµνλ. Namely, the canonical momenta πB, πH conjugated to the
“magnetic” parts B,H (9)-(10) of the respective tensor gauge fields are
constrained through Dirac first-class constraints (16) to be constants iden-
tified with the arbitrary integration constants χ, M (4)-(5) arising within
the Lagrangian formulation of the model. The canonical momenta πiB, π

i
H

conjugated to the “electric” parts Bi,H i (9)-(10) of the auxiliary 3-index
antisymmetric tensor gauge field are vanishing (12) which makes the latter
canonical Lagrange multipliers for the above Dirac first-class constraints.

4. Supersymmetric Brout-Englert-Higgs Effect in Minimal
Supergravity

Let us now apply the above formalism to construct a non-Riemannian
spacetime volume-form version of simplest N = 1 supergravity in D = 4.

Let us recall the standard component-field action of D = 4 minimal
N = 1 supergravity (for definitions and notations we follow [4]):

SSG =
1

2κ2

∫
d4x e

[
R(ω, e)− ψ̄µγ

µνλDνψλ

]
, (17)

e = det ∥eaµ∥ , R(ω, e) = eaµebνRabµν(ω) . (18)

Rabµν(ω) = ∂µωνab − ∂νωµab + ωc
µaωνcb − ωc

νaωµcb . (19)

Dνψλ = ∂νψλ +
1

4
ωνabγ

abψλ , γµνλ = eµae
ν
b e

λ
c γ

abc , (20)

where all objects belong to the first-order “vierbein” (frame-bundle) for-
malism.

The vierbeins eaµ (describing the graviton) and the spin-connection ωµab

(SO(1, 3) gauge field acting on the gravitino ψµ) are a priori independent

fields (their relation arises subsequently on-shell); γab ≡ 1
2

(
γaγb − γbγa

)
etc. denote antisymmetrized products of gamma-matrices with γa being
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the ordinary Dirac gamma-matrices. The invariance of the action (17)
under local supersymmetry transformations:

δϵe
a
µ =

1

2
ε̄γaψµ , δϵψµ = Dµε (21)

follows from the invariance of the pertinent Lagrangian density up to a
total derivative:

δϵ

(
e[R(ω, e)− ψ̄µγ

µνλDνψλ]
)
= ∂µ[e(ε̄ζ

µ)] , (22)

where ζµ functionally depends on the gravitino field ψµ.
We now propose a modification of (17) by replacing the standard generally-

covariant measure density e =
√
−g by the alternative measure density

Φ(B) (Eq.(2) for D = 4):

Φ(B) ≡ 1

3!
εµνκλ ∂µBνκλ , (23)

and we will use the general framework described above. The modified
supergravity action reads:

SmSG =
1

2κ2

∫
d4xΦ(B)

[
R(ω, e)− ψ̄µγ

µνλDνψλ +
εµνκλ

3! e
∂µHνκλ

]
, (24)

where a new term containing the field-strength (Eq.(3) for D = 4) of a
3-index antisymmetric tensor gauge field Hνκλ has been added.

The equations of motion w.r.t. Hνκλ and Bνκλ yield:

∂µ

(Φ(B)

e

)
= 0 → Φ(B)

e
≡ χ = const , (25)

R(ω, e)− ψ̄µγ
µνλDνψλ +

εµνκλ

3! e
∂µHνκλ = 2M , (26)

where χ and M are arbitrary integration constants.
The action (24) is invariant under local supersymmetry transformations

(21) supplemented by transformation laws for Hµνλ and Φ(B):

δϵHµνλ = −e εµνλκ(ε̄ζκ) , δϵΦ(B) =
Φ(B)

e
δϵe , (27)

which algebraically close on-shell, i.e., when Eq.(25) is imposed.
The appearance of the integration constantM represents a dynamically

generated cosmological constant in the pertinent gravitational equations of
motion and, thus, it signifies a spontaneous (dynamical) breaking of super-
symmetry.
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Indeed, varying (24) w.r.t. eaµ:

ebνRa
bµν −

1

2
ψ̄µγ

aνλDνψλ +
1

2
ψ̄νγ

aνλDµψλ

+
1

2
ψ̄λγ

aνλDνψµ +
eaµ
2

ερνκλ

3! e
∂ρHνκλ = 0 (28)

and using Eq.(26) (containing the arbitrary integration constant M) to
replace the last H-term on the l.h.s. of (28), the results is as follows:
we obtain the vierbein counterparts of the Einstein equations including a
dynamically generated floating cosmological constant term eaµM :

ebνRa
bµν −

1

2
eaµR(ω, e) + eaµM = κ2T a

µ , (29)

κ2T a
µ ≡ 1

2
ψ̄µγ

aνλDνψλ − 1

2
eaµψ̄ργ

ρνλDνψλ − 1

2
ψ̄νγ

aνλDµψλ − 1

2
ψ̄λγ

aνλDνψµ .

Let us recall at this point that according to the classic paper [9] the sole ap-
pearance of a cosmological constant in supergravity, even in the absence of
a manifest mass term for the gravitino, implies that the gravitino becomes
massive, i.e., it absorbs the Goldstone fermion of spontaneous supersym-
metry breakdown – a supersymmetric Brout-englert-Higgs effect.

A significantly more interesting scenario occurs when applying the above
formalism with non-Riemannian spacetime volume-forms to anti-de Sitter
(AdS) supergravity. Namely, let us start with the standard AdS supergrav-
ity action (see e.g. Ref.[4]):

SAdS−SG =
1

2κ2

∫
d4x e

[
R(ω, e)− ψ̄µγ

µνλDνψλ −mψ̄µγ
µνψν − 2Λ0

]
,(30)

m ≡ 1

L
, Λ0 ≡ − 3

L2
. (31)

The action (30) contains additional explicit mass term for the gravitino as
well as a bare cosmological constant Λ0 balanced in a precise way |Λ0| =
3m2 so as to maintain local supersymmetry invariance and, in particular,
keeping the physical gravitino mass zero in spite of the presence of a “bare”
gravitino mass term!

At this point let us stress that here we have AdS spacetime as a back-
ground (“vacuum”) with curvature radius L (unlike Minkowski background
in the absence of a bare cosmological constant). Therefore, the notions of
“mass” and “spin” are now given in terms of the eigenvalues of the Casimirs
of the unitary irreducible representations (discrete series) of the group of
motion of AdS space SO(2, 3) ∼ Sp(4,R) (for D = 4) instead of the ordi-
nary Poincare group (SO(1, 3)nR4) Casimirs (see e.g. Ref.[14]). Thus, on
AdS background it is possible for the gravitino to be massive even in the
absence of a “bare” gravitino mass term and, vice-versa, it will be massless
even in the presence of a large “bare” mass provided it is tuned up w.r.t.
AdS cosmological constant as in (31).
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Now, following the same steps as with (24) we construct a modified AdS
supergravity with non-Riemannian spacetime volume element:

Smod−AdS−SG =
1

2κ2

∫
d4xΦ(B)

[
R(ω, e)− ψ̄µγ

µνλDνψλ

−mψ̄µγ
µνψν − 2Λ0 +

εµνκλ

3! e
∂µHνκλ

]
, (32)

with Φ(B) as in (23) and m,Λ0 as in (30). The action (32) is invariant
under local supersymmetry transformations:

δϵe
a
µ =

1

2
ε̄γaψµ , δϵψµ =

(
Dµ − 1

2L
γµ

)
ε ,

δϵHµνλ = −e εµνλκ(ε̄ζκ) , δϵΦ(B) =
Φ(B)

e
δϵe . (33)

The modified AdS supergravity action (32) will trigger dynamical spon-
taneous supersymmetry breaking resulting in the appearance of the dynam-
ically generated floating cosmological constant M as in Eq.(29) which will
add to the bare cosmological constant Λ0. Now we can use the freedom
in choosing the value of the a priori arbitrary integration constant M in
order to match two basic requirements by modern cosmological scenarios
for slowly expanding universe of today [15]. Namely, we can achieve via
appropriate choice of M ≃ |Λ0| = 3m2 a very small effective observable
cosmological constant:

Λeff =M + Λ0 =M − 3m2 ≪ |Λ0| (34)

and, simultaneously, a large physical gravitino mass meff :

meff ≃ m =

√
1

3
|Λ0| , (35)

which will be very close to the large “bare” gravitino mass parameter m =√
|Λ0|/3 since now because of the smallness of Λeff (34) the background

spacetime geometry becomes almost flat.

5. Conclusions

We have shown that applying the formalism with non-Riemannian space-
time volume-forms in gravity/matter theories provides a simple mecha-
nism for dynamical generation of a cosmological constant. The latter ap-
pears as a conserved Dirac-constrained canonical momentum conjugated
to the auxiliary maximal-rank antisymmetric gauge field building up the
non-Riemannian volume-form. In the context of modified minimal N = 1
supergravity defined in terms of a non-Riemannian spacetime volume-form
the dynamically generated cosmological constant triggers spontaneous su-
persymmetry breakdown and gravitino mass generation (supersymmetric
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Brout-Englert-Higgs effect). Upon constructing modified anti-de Sitter su-
pergravity with a non-Riemannian spacetime volume-form we can fine-tune
the dynamically generated cosmological integration constant in order to
achieve simultaneously a very small physical observable cosmological con-
stant and a very large physical observable gravitino mass – a paradigm of
modern cosmological scenarios for slowly expanding universe of the present
epoch.
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