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Abstract

This talk gives the basics of extended geometry, with a focus on the gauge trans-

formations, the generalised diffeomorphisms. Some global issues are discussed. I

also go into some detail about how the formalism can be made to allow for a

geometric derivation of discrete duality transformations and of monodromies for

non-geometric field configurations.

Duality symmetries in string theory/M-theory mix gravitational and non-

gravitational fields. Manifestation of such symmetries calls for a generali-

sation of the concept of geometry.

It has been proposed that the compactifying space (torus) is enlarged

to accommodate momenta (representing momenta and brane charges) in

modules of a duality group. This leads to doubled geometry [1]-[23]. in the

context of T-duality, and exceptional geometry [24]-[39] in the context of

U-duality.

In the present talk, I will

• Describe the basics of extended geometry: fields, gauge transforma-

tions, &c.

• Discuss some global issues concerning generalised manifolds.

• Make precise how duality transformations become “geometric”, and

what remains for a full description.

• Point out some questions and directions.
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Consider a compactification from 11 to 11− n dimensions on Tn. As is

well known, all fields and charges fall into modules of En(n):

n En(n) R1

3 SL(3)× SL(2) (3,2)

4 SL(5) 10

5 Spin(5, 5) 16

6 E6(6) 27

7 E7(7) 56

8 E8(8) 248

I will focus on diffeomorphisms, and how they generalise. The ordinary

diffeomorphisms go together with gauge transformations for the 3-form and

(dual) 6-form fields (and for high enough n also gauge transformations for

dual gravity) in an En(n) module R1. This is the “coordinate module”. The

derivative transforms in R̄1.

The situation for T-duality is simpler. Compactification from 10 to 10−
d dimensions give the (continuous) T-duality group O(d, d). The momenta

are complemented with string windings to form the 2d-dimensional module.

Note that the duality group is not to be seen as a global symmetry.

Instead, discrete duality transformations in O(d, d;Z) or En(n)(Z) should

arise as symmetries in certain backgrounds, just as the mapping class group

SL(n;Z) arises as discrete isometries of a torus. The rôle of the continuous

versions of the duality groups should be analogous to that of GL(n) in

ordinary geometry (gravity).

One has to decide how tensors transform. The generic recipe is to mimic

the Lie derivative for ordinary diffeomorphisms:

LUV
m = Un∂nV

m − ∂nU
mV n

where the first term is a transport term and the second a gl transformation.

In the case of U-duality, the role of GL is assumed by En(n) × R, and

LUV
M = LUV

M + Y MN
PQ∂NUPV Q

= UN∂NV M + ZMN
PQ∂NUPV Q

where ZMN
PQ = −αnP

M
adjQ,

N
P + βnδ

M
Q δNP = Y MN

PQ − δMP δNQ . projects

on the adjoint of En(n) ×R. Y is an invariant tensor, the form of which we

do not give here (see ref. [34]).
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The transformations form an algebra for n ≤ 7:

[LU ,LV ]W
M = L[[U,V ]]W

M

where the “Courant bracket” is [[U, V ]]M = 1
2(LUV

M − LV U
M ), provided

that the derivatives fulfill a “section condition”.

This section condition ensures that fields locally depend only on an n-

dimensional subspace of the coordinates, on which a GL(n) subgroup acts.

It reads Y MN
PQ∂M . . . ∂N = 0, or

(∂ ⊗ ∂)|R̄2
= 0

n R1 R2

3 (3,2) (3̄,1)

4 10 5̄

5 16 10

6 27 2̄7

7 56 133

8 248 1⊕ 3875

The interpretation of the section condition is that the momenta locally

are chosen so that they may span a linear subspace of cotangent space with

maximal dimension, such that any pair of covectors p, p′ in the subspace

fulfill (p⊗ p′)|R̄2
= 0.

The corresponding statement in T-duality is ηMN∂M ⊗ ∂N = 0, where

η is the O(d, d)-invariant metric. The maximal linear subspace is a d-

dimensional isotropic (light-like) subspace, and it is determined by a pure

spinor Λ. Once a Λ is chosen, the section condition can be written ΓMΛ∂M =

0. An analogous linear construction can be performed in the exceptional

setting [34].

The generalised diffeomorphisms do not satisfy a Jacobi identity. On

general grounds, it can be shown that the “Jacobiator” is proportional to

(([[U, V ]],W )) + cycl, where ((U, V )) = 1
2(LUV + LV U).

It is important to show that the Jacobiator in some sense is trivial. It

turns out that L((U,V ))W = 0 (for n ≤ 7), and the interpretation is that it

is a gauge transformation with a parameter representing reducibility.
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In doubled geometry, this reducibility is just the scalar reducibility of

a gauge transformation: δB2 = dλ1, with the reducibility δλ1 = dλ′
0.

In exceptional geometry, the reducibility turns out to be more com-

plicated, leading to an infinite (but well defined) reducibility, containing

the modules of tensor hierarchies, and providing a natural generalisation of

forms (having connection-free covariant derivatives).

I will skip the detailed description of the generalised gravity. It effec-

tively provides the local dynamics of gravity and 3-form, which are encoded

by a vielbein EM
A in the coset (En(n) × R)/K(En(n)).

n En(n) K(En(n))

3 SL(3)× SL(2) SO(3)× SO(2)

4 SL(5) SO(5)

5 Spin(5, 5) (Spin(5)× Spin(5))/Z2

6 E6(6) USp(8)/Z2

7 E7(7) SU(8)/Z2

The T-duality case is described by a generalised metric or vielbein in

O(d, d)/(O(d)×O(d)), parametrised by the ordinary metric and B-field.

With some differences from ordinary geometry, one can go through the

construction of connection, torsion, metric compatibility &c., and arrive at

generalised Einstein’s equations encoding the equations of motion for all

fields.

One may introduce global or local supersymmetry, although the concept

of superfields and supergeometry is quite unexplored.

Just like a manifold may be described by an atlas of coordinate charts

with transition functions on the overlaps, we want to patch a generalised

manifold by overlaps, that must be finite generalised diffeomorphisms.

In ordinary geometry, the transition functions are matrices MM
N =

∂XN

∂X′M , and covectors obey

A′
M (X ′) = MM

NAN (X) .

Now we need M to be replaced by a group element F in En(n) × R or

O(d, d):

A′
M (X ′) = FM

N (M)AN (X) .
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The matrix F is known explicitly for O(d, d) [16][18].

F (M) =
1

2

(
M(M−1)t + (M−1)tM

)
Only partial results exist for exceptional groups [40].

The O(d, d) result can be obtained from exponentiation of the gener-

alised Lie derivative. The näıve composition rule does not hold, F (M)F (N) ̸=
F (MN), i.e., the map F : GL(2d) → O(d, d) is not a group homomor-

phism. Instead, a “twisted” version holds [18],

F (M)F (N) = F (MN)e∆ ,

where e∆ is a generalised diffeomorphism that leaves the coordinated un-

changed. The existence of such transformations is due to the section

condition, and has no counterpart in ordinary geometry. Such a “non-

translating” generalised coordinate transformation only transforms the B-

field, and not the metric (given an explicit solution to the section condition).

The situation can be summarised as follows: For any choice of M = ∂X
∂X′

there is an equivalence class of generalised diffeomorphisms, all given by

F (M,∆) = F (M)e∆ for some ∆, with F (M) as a canonical representative.

The map from GL(2n) to the equivalence class is a homomorphism.

This leads to a gerbe structure. Defining

H(M,N) = F (M)F (M−1N)F (N−1) ,

the product

Λ(M,N,P ) = H(M,N)H(N,P )H(P,M)

defines the non-trivial triple overlap (cocycle).

It is not surprising that a gerbe structure arises, given that tensor gauge

transformations are contained in the formalism. It is however striking that

the structure can be examined very concretely, and that the abelian gerbe

is embedded in the (non-abelian) O(d, d).

We expect “slightly” non-abelian gerbes to arise in the U-duality con-

text, as soon as the 6-form dual to the 3-form becomes important, i.e., for

n ≥ 5. These (finite) transformations have yet to be constructed.

Back to the geometric origin of duality symmetries. To what extent can

they be obtained as “generalised isometries”? There is a severe restriction,

that is a result of the section condition. The situation is analogous in the

O(d, d) and En(n) cases, I review the O(d, d) situation for simplicity.
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The solution to the section condition, forcing all fields to depend only on

a subset of the coordinates, identified as “ordinary” space, is not changed

by generalised diffeomorphisms. Transformations in O(d, d) preserving an

isotropic subspace do not fill out the entire O(d, d), but only GL(d)n∧2d.

In a basis with X = (x, x̃), where x are the physical coordinates, they

take the form [
m •
0 m−1

]
In a basis with X = (x, x̃), where x are the physical coordinates, they take

the form [
m •
0 m−1

]
This means that a large part of O(d, d,Z) is excluded. Even the simple

T-duality transformation interchanging momenta and string windings (or

x and x̃) through “R ↔ 1
R” cannot be obtained as a generalised diffeomor-

phism.

It also means that such transformations are not available as transition

functions on overlaps, so that genuinely “non-geometric” solutions can not

be constructed.

How can the situation be saved? It turns out that double diffeomor-

phisms can be formulated not only using the algebraic invariant O(d, d)

metric ηMN , but any pseudo-Riemannian (split-signature) metricHMN (X):

LξVM = (LξV )M −HMPH
NQDQξ

PVN .

where now the covariant derivative D contains the torsion-free affine con-

nection for H.

The potential curvature obstructions in the algebra then “miraculously”

cancel [19, 23]. Some further flatness restrictions are imposed by the con-

sistency of the covariant section condition. The defining metric H is not

dynamical.

Corresponding statements should be true for exceptional groups, but

there the structure in question is not a metric structure.

The point of such a “pre-geometric” formulation is that it becomes

clear that any isometry of H will be a global symmetry of the model. For

infinitesimal (continuous) isometries, the statement [Lu,Lξ] = L[u,ξ] can be

verified explicitly, and the analogous statement is true for finite isometries,

e.g. the discrete isometries of a torus, where O(d, d;Z) is the isometry

subgroup of the mapping class group of the 2d-torus.
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Isometries are automorphisms of the generalised diffeomorphisms. Their

parameters are not restricted by the section condition, and may therefore

We may, and should, declare them as part of the gauge symmetry. By

doing this, the problem of geometrising duality is solved, and a prescrip-

tion is obtained for how fields transform under it. The same is true for

non-geometric field configurations, where monodromy around some loop in

a base space may take values in the gauge group, now containing T-duality

transformations.

To conclude:

• Extended geometry unifies metric and tensor fields, and their respec-

tive gauge symmetries, in a framework providing interesting generali-

sations of ordinary geometry.

• Many questions remain to be examined, especially concerning finite

transformations and the construction of “generalised manifolds”. Most

pressing is the issue of the section condition. Although it is covariant,

its solutions explicitly break the continuous duality groups. It should

preferably be promoted to a dynamically generated constraint, which

would allow for true actions.

• A superspace formulation seems realistic for T-duality, but more prob-

lematic for U-duality. Simultaneous manifestation of supersymmetry

and duality through some generalisation of pure spinor superfields may

prove very powerful.

• Partial results exist on exceptional diffeomorphisms for n > 7. This is

where dual gravity becomes important. This deserves further investi-

gation.
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