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Abstract

After a brief survey of results related to the application of the AdS/CFT cor-
respondence to N = 1 supersymmetric models, I elaborate on certain geometric
problems arising in this setup, more particularly on the construction of a Ricci-flat
metric on the cone over a del Pezzo surface of rank one.

1. The AdS/CFT correspondence

The AdS/CFT conjecture states that certain conformal field theories (CFT)
are in a precise way dual to string theory models describing string prop-
agation in anti-de-Sitter space (AdS). The original example is the duality
between the maximally supersymmetric Yang-Mills theory (N = 4 SYM)
and the type IIB superstring in the space AdS5 × S5 [1]. Consider Yang-
Mills theory with gauge group SU(N) and coupling constant gYM. From
the point of view of the AdS5×S5 geometry these two parameters – N and
gYM – are related to the radius of the sphere and the flux of the self-dual
5-form through it. 1:

R2 ∼
√
g2

YMN,

∫
S5

F5 ∼ N. (1)

The correspondence between the two theories manifests itself, in particular,
in the fact that the global symmetries of field theory correspond to the
super-isometries of AdS5 × S5. Indeed, the superconformal group of the
N = 4 theory is PSU(2, 2|4). Its maximal bosonic subgroup is SU(2, 2)×
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SU(4). Here the first factor is isomorphic to SO(2, 4) – the conformal
group of four-dimensional Minkowski space, and the second one represents
the R-symmetry group of the theory. On the other hand, SO(2, 4) and
SO(6) are isometry groups of the anti-de-Sitter space and the five-sphere,
respectively.

The simplest modification of this basic model is obtained if one factor-
izes the sphere by a discrete subgroup of the isometry group SO(6):

AdS5 × S5 −→ AdS5 × S5/Γ, Γ ⊂ SO(6). (2)

The dual gauge theory is now different: the gauge group consists of several
simple factors, and the matter multiplets are in bifundamental representa-
tions. The number of supersymmetries is also reduced, and it depends on
the structure of the group Γ.

2. Sasakian manifolds and N = 1 supersymmetry

All manifolds of the type AdS5×S5/Γ are particular cases of a rather wide
class of solutions of IIB supergravity of the form AdS5 ×X5, in which the
dilaton φ is constant and the only nonzero form is the 5-form:

φ = const., F5 ∼ N ((vol)AdS5 + (vol)X5) . (3)

The Bogomolnyi-Prasad-Sommerfeld condition for this configuration, i.e.
the requirement of preservation of at least one supersymmetry, reduces to
the vanishing of the gravitino variation:

δψµ = (∇µ + F5γµ)ε = 0. (4)

The spinor ε, satisfying (4), is called a Killing spinor. The existence of
a Killing spinor substantially constrains the geometry of the space X5.
In particular, one can show, similarly to the way it is done in [2], that
the solubility of the equation (4) is equivalent to the requirement that the
metric cone over X5 should be Kähler and Ricci-flat. In other words, let

(d̃s2)X5 be the metric on X5. The metric on the cone is, by definition,

ds2 = dr2 + r2(d̃s2)X5 . The requirement of supersymmetry is that the
metric ds2 is Kähler and Ricci-flat (the latter following as well directly
from the fact, that due to the supergravity equations of motion and the

5-form (3) (d̃s2)X5 is an Einstein metric of positive curvature). In this case

the metric on the base of the cone (d̃s2)X5 is called Sasaki-Einstein.
Locally all Sasaki-Einstein metrics look rather simple: they can be writ-

ten in the form

(ds2)X5 = (dϕ−A)2 +

2∑
i,j=1

gij̄ dzi dz̄j . (5)
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Here gij̄ is a Kähler-Einstein metric on some complex surface (the meaning
of this surface is explained below, see section 2.1.1.) and A is the Kähler
current. Validity of such representation is clear for the sphere S5, if one
recalls that it is the total space of a Hopf fiber bundle with base CP2. An
important difference of the general case is that gij̄ does not necessarily have

to be smooth (although the metric on X5 is smooth).
On a Sasaki-Einstein manifold with the metric (5) there is a canonical

vector field ∂/∂ϕ with fixed norm – it is the so-called Reeb vector. From
the point of view of the dual gauge theory, this U(1) isometry of the space
X5 is dual to the global U(1) symmetry of the superconformal field theory
– the R-symmetry, which acts on the supercharges [3]:

Q→ eiαQ, Q̄→ e−iαQ̄. (6)

In contrast to a generic theory with N = 1 supersymmetry, a supercon-
formal theory always possesses a U(1) R-symmetry, since the generator of
R-symmetry enters explicitly in the superalgebra SU(2, 2 | 1) (hence the
R-transformations are its inner automorphisms).

2.1. Calabi-Yau manifolds and singularities

The construction of the cone over a Sasaki-Einstein manifold X5, described
above, allows one to take a new look at the configuration of the type AdS5×
X5. Here one can recall the interpretation of the N = 4 SYM theory as
an effective field theory describing the oscillations of a stack of parallel D3-
branes embedded in flat space R1,9. Clearly, in this case the transverse space
to the branes is R6. The branes are massive objects, and therefore they
change the geometry of the space, in which they are embedded. Assuming
that the branes are located at the origin of the space R6, one can introduce
a radial coordinate r and look for supergravity solutions of the type

ds2 = h−1/2(r)
4∑
i=1

dx2
i + h1/2(r)(dr2 + r2(dΩ)S5). (7)

Since the branes are charged with respect to the 5-form F5, there is an
extra condition

∫
S5 F5 ∼ N . The solution has the form [4] (l is a linear

scale)

h(r) = 1 +
l4N

r4
. (8)

In the limit r → 0 we obtain the metric of AdS5 × S5. It is clear
then that the sphere S5 emerges as the locus of points, equidistant from
r = 0 (in the natural flat metric) in the six-dimensional space, in which the
branes are embedded. Now we can consider the case when the ‘internal’
six-dimensional space is not a flat one, but rather a general (compact)
Calabi-Yau space Y 6. Placing the branes at a nonsingular point of Y 6, we
will again have N = 4 SYM as a low-energy limit. The situation changes,
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however, if we place the branes at a singular point of the Calabi-Yau space.
In this case the effective field theory on the branes depends on the local
geometry of Y 6 in the vicinity of the singularity. The neighborhood of
the singularity can be described by a noncompact Ricci-flat metric of the

conical type, i.e. the metric which has the form (ds2)sing = dr2+r2(d̃s2)X5 .
In this case the points equidistant from the singularity form not an S5 but
rather the Sasaki-Einstein manifold X5. The ansatz (7) is still valid and
leads in the limit r → 0 to the configuration AdS5 ×X5 [5].

2.1.1. The cones

It follows from the previous section that the spaces X5 are tightly connected
with the singularities of the Calabi-Yau manifolds Y 6 of complex dimen-
sion 3. Here we will focus on those singularities which are singularities of
complex cones over complex surfaces. The surfaces will be denoted by M
hereafter. However, it is simplest to explain the notion with the example
of a cone over a complex curve, namely when M = CP1. Indeed, consider
a conic in CP2:

X2
0 +X2

1 +X2
2 = 0 (9)

This algebraic variety is isomorphic to CP1, and it is nonsingular as a
hypersurface in CP2. In order to pass to the cone, we should ‘forget’ that
X0, X1, X2 are projective coordinates, that is to say we will treat them as
ordinary affine variables. In other words, we will consider the equation (9)
as defined in C3. Thus one obtains a singularity at the origin X0 = X1 =
X2 = 0. We will call this singular variety the complex cone over CP1. This
definition can be extended in a straightforward way to complex cones over
complex surfaces (one just needs to consider a higher-dimensional ambient
space CPN and certain algebraic equations therein).

The only remaining question is in which case the affine manifolds of
the sort (9) are Ricci-flat (or, more precisely, in which case they remain
Ricci-flat after the singularity at the origin has been resolved). It turns out
that this requirement is met if and only if the complex surface M has an
ample anticanonical bundle. (In the example (9) one is in fact dealing with
a complex curve CP1, which has an ample anticanonical bundle as well.)
In the language of differential geometry it means that M is a positively
curved surface, or, more exactly, that the integral of the Ricci form over
any homologically nontrivial two-cycle C is positive:∫

C

i

2π
Rmn̄ dzm ∧ dz̄n > 0. (10)

It is known from algebraic geometry that the only compact nonsingular
surfaces of positive curvature are CP1 ×CP1, CP2, as well as the blow-ups
of CP2 in no more than eight points – these are the so-called del Pezzo
surfaces (two-dimensional Fano varieties).

Pick one of these surfaces M. How can one build a corresponding
Sasaki-Einstein metric on X5? When M admits a Kähler-Einstein metric
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(with Kähler potential K), the answer is given by formula (5). It can
be rewritten in a slightly different way, if one recalls the correspondence
between the Kähler-Einstein metrics on M and Ricci-flat metrics on Y 6.
One can search for a Kähler potential K, which defines the (Ricci-flat)
metric on the complex cone over M, in the following form:

K = K(|u|2eK). (11)

This ansatz is known as Calabi’s ansatz [6].

3. Cone over the del Pezzo surface

The del Pezzo surface of rank one, dP1, is the blow-up of CP2 at one point.
There is a concrete algebraic model for it. The surface can be embedded
into CP8, and the embedding is given by those sections of OCP2(3) which
vanish at a given point on CP2, for example at (z1 : z2 : z3) = (0 : 0 :
1). The embedding is called anticanonical, since the standard tautological
sheaf OCP8(1) over the ambient space CP8, when restricted to the surface,
coincides with its anticanonical sheaf. Once the embedding is specified, the
affine cone may be constructed simply by passing from projective space
CP8 to the affine space C9.

In this construction we have chosen a reference point (0 : 0 : 1) ∈ CP2,
which was subsequently blown-up. This reduces the automorphism group
PGL(3,C) of CP2 to the automorphism group of dP1:

Aut(dP1) = P

( • • 0
• • 0
• • •

)
, (12)

and the cone Y := Cone(dP1) has as its automorphism group the maxi-
mal parabolic subgroup of GL(3,C) defined by matrices of the form (12)
(forgetting the projectivization).

We will be looking for a Kähler metric on Y with the isometry group
being the maximal compact subgroup of Aut(Y ):

Isom(Y ) = U(2)× U(1) (13)

In more practical terms, we will introduce three complex coordinates z1, z2, u
on Y and, due to the U(2)×U(1) isometry, we will assume that the Kähler
potential depends on the two combinations of them:

K = K(|z1|2 + |z2|2, |u|2) (14)

The corresponding Kähler form is Ω = i∂∂̄K and the metric is gij̄ = ∂i∂̄jK.
The Ricci tensor is related to the metric of a Kähler manifold as Rij̄ =

−∂i∂̄j log det g. The Ricci-flatness (Calabi-Yau) condition Rij̄ = 0 takes
the form of a Monge-Ampere equation for the function G(µ, ν), which is the
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Legendre transform of K with respect to the variables t = log (|z1|2 + |z2|2)
and s = log (|u|2):

G = µ t+ ν s−K (15)

The usefulness of the new variables (µ, ν) to a large extent relies on the fact
that they have a transparent geometric meaning – these are the moment
maps for the following two U(1) actions on Y :

U(1)µ : ( z1 → eiα z1, z2 → eiα z2 ) U(1)ν : u→ eiβ u (16)

The Ricci-flatness equation has the following form:

e
∂G
∂µ

+ ∂G
∂ν

(
∂2G

∂µ2

∂2G

∂ν2
−
(
∂2G

∂µ∂ν

)2
)

= ã µ (17)

Denoting (µ, ν) by (µ1, µ2), we can recover the metric from the dual
potential G [7] using the formula

ds2 = µ gCP1+
2∑

i,j=1

∂2G

∂µi∂µj
dµi dµj+

2∑
i,j=1

(
∂2G

∂µ2

)−1

ij

(dφi −Ai) (dφj −Aj) ,

(18)
where gCP1 is the standard round metric on CP1, A2 = 0 and A1 is the
‘Kähler current’ of CP1, i.e. a connection, whose curvature is the Fubini-
Study form of CP1: dA1 = ωCP1 .

Since (µ, ν) are moment maps for the U(1)2 action, the domain on which
the potential G(µ, ν) is defined is the moment polygon for this U(1)2 action.
In this case it is an unbounded domain with two vertices, hence we may
call it a ‘biangle’.

From the perspective of the equation (17), it is the singularities of the
function G that determine the polygon. As we approach an arbitrary edge
Li of the polygon, i.e. when Li → 0, we impose the asymptotic condition

G = Li (logLi − 1) + . . . as Li → 0, (19)

where the ellipsis indicates terms regular at Li → 0. Despite being sub-
leading, they are important for the equation (17) to be consistent even in
the limit Li → 0.

Notice that, in addition to the U(1)2 action (16), there is yet another
U(1) action given by (z1 → eiα z1, z2 → e−iα z2). Therefore the fiber over
a generic point of the biangle is CP1 × T2. The angles of the moment
polygon are detemined by the normal bundles to the two CP1’s ‘located’
in the corners (see [8] for a detailed discussion).
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3.1. An expansion away from the vertex of the cone

To start the analysis of the equation (17) first of all we shift the origin along
the µ-axis by a constant µ0 in such a way that the new origin is located at
the intersection point of the two outer lines of the moment ‘biangle’.

We aim at building an expansion of the metric at ‘infinity’, i.e. far from
the ‘vertex’. For this purpose, instead of the {µ, ν} variables, we will use a
‘radial’ variable ν and an ‘angular’ variable ξ:

{µ, ν} →
{
ν, ξ =

µ− µ0

ν

}
(20)

Then the equation (17) above may be rewritten as follows:

e
∂G
∂ν
− ξ−1

ν
∂G
∂ξ

[
∂2G

∂ξ2

∂2G

∂ν2
−
(
∂2G

∂ξ∂ν
− 1

ν

∂G

∂ξ

)2
]

= a ν3
(
ξ +

µ0

ν

)
(21)

We propose the following expansion for the potential G at ν → ∞ (b is a
constant):

G = 3ν(log ν − 1) + ν P0(ξ) + b log ν +
∞∑
k=0

ν−k Pk+1(ξ) (22)

Substituting this expansion in the equation, we obtain a ‘master’ equa-
tion, which can then be expanded in powers of 1

ν and solved iteratively for
the functions Pk(ξ).

3.1.1. Leading order

The first equation is obtained from (21) in the limit ν →∞:

P ′′0 =
a

3
ξ e(ξ−1)P ′0−P0 (23)

and has the solution

P0(ξ) = log
(
−a

9

)
−

2∑
i=0

ξ − ξi
ξi − 1

log (ξ − ξi), (24)

where ξi are the roots of the polynomial

Q(ξ) = ξ3 − 3

2
ξ2 + d, (25)

and d is a constant of integration, which plays a crucial geometric role.
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The function P0(ξ) determines the metric at infinity by means of the
formulas (22) and (18). One can check that in the original (µ, ν) variables
the ‘radial’ part of the metric is determined by

G0 =
2∑
i=0

µ− ξi ν
1− ξi

(log (µ− ξi ν)− 1) (26)

It turns out that there is a topological restriction on the roots ξi, which
is related to the fact that the two CP1’s embedded in the corners of the
moment ‘biangle’ should have correct normal bundles (a full discussion of
this can be found in [8]). As a result the value of d in (25) is uniquely fixed
to

d =
16 +

√
13

64
. (27)

Quite generally, it may be shown that the function G satisfying eq. (21)
has the following structure (up to a certain ‘regularity requirement’ at the
edges of the moment biangle, see [8]):

G =
µ̃− ξ1 ν

1− ξ1

(
log

(
µ̃− ξ1 ν

1− ξ1

)
− 1

)
+
µ̃− ξ2 ν

1− ξ2

(
log

(
µ̃− ξ2 ν

1− ξ2

)
− 1

)
+

+

(
µ̃− ξ0 ν

1− ξ0
+ b

) (
log

(
µ̃− ξ0 ν

1− ξ0
+ b

)
− 1

)
+ b

∞∑
k=2

(
b

ν

)k
P̃k−2(ξ),

where P̃k(ξ) is a polynomial of degree k. Here the variable µ has been
shifted in such a way that the new origin is located at µ̃ = ν = 0.

3.1.2. Singular points of the Heun equation and eigenfunctions

We proceed to describe in more detail the equations that arise in higher
orders of perturbation theory. In the k-th order we arrive at the following
equation:

DkP̃k :=
d

dξ

(
Q(ξ)

dP̃k
dξ

)
−
(
(k + 1)2 − 1

)
ξP̃k = r.h.s., (28)

where Q(ξ) has been defined in (25) and the right hand side depends on

the previous orders of perturbation theory, i.e. on P̃k−1, . . . , P̃0 and their
derivatives. One can show that the inhomogeneous equation (28) has a
polynomial solution of degree k. The general solution, however, is produced
by adding to this particular solution a general solution of the homogenized
equation DkΠk = 0. The roots ξi, i = 0, 1, 2 of the polynomial Q(ξ) =

2∏
i=0

(ξ − ξi) are singular points of this equation. Moreover, by making the



Branes at toric conical singularities 31

change of variables ξ → 1
ξ , one easily sees that ∞ is a singular point as

well. Hence DkΠk = 0 is a Fuchsian equation with 4 singular points – a
particular case of the so-called Heun equation, in which all exponents are
zero.

The question we wish to pose is whether the homogenized equation
DkΠk = 0 has a nontrivial solution regular at two of the singular points, say
ξ1, ξ2. This is necessary in order to comply with the regularity requirement
mentioned above. We claim that the answer is positive only for k = 0, 1:

Π0 = α (29)

Π1 = β(ξ − 1), (30)

where α, β = const.

Quite interestingly, the nontrivial solutions are independent of the constant
d, which suggests that they are also relevant for the deformations of other
Ricci-flat cones asymptotic to (real) cones over Sasaki-Einstein manifolds.

Orthotoric
ansatz

Cone	over	dP1
β

α

Figure 1: The red spot rep-
resents the known (orthotoric)
metric on the cone over dP1.

In general the fact that some param-
eters are absent in the metric at infin-
ity and then appear in different orders
of the expansion around this metric is
compatible with the known cases. One
prominent example is the resolved coni-
fold, which is asymptotic to the real cone
over the Einstein-Sasaki manifold T 1,1 =
SU(2)×SU(2)

U(1) at infinity and exhibits two res-

olution parameters in an expansion around
infinity [9].

As we have just discussed, there exists a
Ricci-flat metric with U(2)×U(1) isometry
on the complex cone over dP1 with at most
two parameters, which we termed α and β.
There exists a closed expression for G, and
hence for the metric, in a particular case
when the parameters α and β are related in
a certain way — this is the metric obtained
in [10], as well as in [11] by means of the

so-called ‘orthotoric’ ansatz developed in [12].

4. Conclusion and outlook

We have explained, how remarkable geometric objects appear in the anal-
ysis of N = 1 superconformal theories via the AdS/CFT correspondence.
As a particular interesting example, we have analyzed the parameter space
of Ricci-flat metrics on the complex cone over a del Pezzo surface of rank
one (sometimes also called the Hirzebruch surface F1). In particular, using
an expansion at infinity, we have found one potential new parameter β (see
(30)). In general we conjecture that there is a particular relation between
β and α that preserves the correct topology, i.e. β = β(α) (see Fig. 1).
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In this case the remaining parameter is related to the size of the blown-up
CP1 in the base of the cone, i.e. in the del Pezzo surface.

It would be very interesting to obtain an exact formula (like the one of
[12]-[11]), for the solution with two generic values of the parameters α, β,
and this would certainly shed light on these questions.
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